KINKED STRUCTURES OF ISOLATED NICOTINIC RECEPTOR M2 HELICES - A MOLECULAR-DYNAMICS STUDY

被引:17
作者
SANKARARAMAKRISHNAN, R [1 ]
SANSOM, MSP [1 ]
机构
[1] UNIV OXFORD,MOLEC BIOPHYS LAB,OXFORD OX1 3QU,ENGLAND
基金
英国惠康基金;
关键词
D O I
10.1002/bip.360341209
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pore-lining M2 helix of the nicotinic acetylcholine receptor exhibits a pronounced kink when the corresponding ion channel is in a closed conformation [N. Unwin (1993) Journal of Molecular Biology, Vol. 229, pp. 1101-1124]. We have performed molecular dynamics simulations of isolated 22-residue M2 helices in order to identify a possible molecular origin of this kink. In order to sample a wide range of conformational space, a simulated annealing protocol was used to generate five initial M2 helix structures, each of which was subsequently used as the basis of 300 ps MD simulations. Two helix sequences (M2 alpha and M2 delta) were studied in this manner, resulting in a total of ten 300 ps trajectories. Kinked helices present in the trajectories were identified and energy minimized to yield a total of five different stable kinked structures. For comparison, a similar molecular dynamics simulation of a Leu(23) helix yielded no stable kinked structures. In four of the five kinked helices, the kink was stabilized by H bonds between the helix backbone and polar sidechain atoms. Comparison with data from the literature on site-directed mutagenesis of M2 residues suggests that such polar side-chain to main-chain H bonds may also contribute to kinking of M2 helices in the intact channel protein. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:1647 / 1657
页数:11
相关论文
共 33 条
[1]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[2]   HELIX GEOMETRY IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 201 (03) :601-619
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Stratification of the channel domain in neurotransmitter receptors [J].
Bertrand, Daniel ;
Galzi, Jean-Luc ;
Devillers-Thiery, Anne ;
Bertrand, Sonia ;
Changeux, Jean-Pierre .
CURRENT OPINION IN CELL BIOLOGY, 1993, 5 (04) :688-693
[5]   HYPOTHESIS ABOUT THE FUNCTION OF MEMBRANE-BURIED PROLINE RESIDUES IN TRANSPORT PROTEINS [J].
BRANDL, CJ ;
DEBER, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :917-921
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]  
Brooks III C. L., 1988, PROTEINS THEORETICAL
[8]  
BRUNGER AT, 1992, X PLOR VERSION 3 0
[9]   THE FUNCTIONAL ARCHITECTURE OF THE ACETYLCHOLINE NICOTINIC RECEPTOR EXPLORED BY AFFINITY LABELING AND SITE-DIRECTED MUTAGENESIS [J].
CHANGEUX, JP ;
GALZI, JL ;
DEVILLERSTHIERY, A ;
BERTRAND, D .
QUARTERLY REVIEWS OF BIOPHYSICS, 1992, 25 (04) :395-432
[10]  
CHARNET P, 1990, NEURON, V2, P87