WAVE-FUNCTIONS ON A MINISUPERSPACE OF HIGHER-DIMENSIONAL GEOMETRIES

被引:4
作者
CHMIELOWSKI, P
机构
[1] Department of Physics, University of Chicago, Chicago, IL 60637
来源
PHYSICAL REVIEW D | 1990年 / 41卷 / 06期
关键词
D O I
10.1103/PhysRevD.41.1835
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider minisuperspace quantum models of the universes with spatial sections being a product of two maximally symmetric spaces. If neither of the spaces has negative curvature, no Lorentzian solutions exist. If one of the subspaces is flat, and the other has negative curvature, the Lorentzian Hartle-Hawking ground state is the Minkowski space with a specific parametrization chosen by the boundary term in the action. We analyze the propagation of wave packets in the minisuperspace of the model with both subspaces of negative curvature. Both the wave packets and classical trajectories oscillate if the number of space-time dimensions is less than ten. However, the wave packets do not follow classical trajectories, although they are (in principle) distinguishable even after a large number of oscillations, in contrast with the gravity-scalar-field model. © 1990 The American Physical Society.
引用
收藏
页码:1835 / 1843
页数:9
相关论文
共 31 条
[11]   CORRELATIONS IN THE WAVE-FUNCTION OF THE UNIVERSE [J].
HALLIWELL, JJ .
PHYSICAL REVIEW D, 1987, 36 (12) :3626-3640
[12]   THE QUANTUM COSMOLOGY OF EINSTEIN-MAXWELL THEORY IN 6 DIMENSIONS [J].
HALLIWELL, JJ .
NUCLEAR PHYSICS B, 1986, 266 (01) :228-244
[13]  
HALLIWELL JJ, NSFITP88131 U CAL RE
[14]   WAVEFUNCTION OF THE UNIVERSE [J].
HARTLE, JB ;
HAWKING, SW .
PHYSICAL REVIEW D, 1983, 28 (12) :2960-2975
[15]   QUANTUM KALUZA-KLEIN COSMOLOGIES .3. [J].
HU, XM ;
WU, ZC .
PHYSICS LETTERS B, 1985, 155 (04) :237-240
[16]   WAVE-PACKETS IN MINISUPERSPACE [J].
KIEFER, C .
PHYSICAL REVIEW D, 1988, 38 (06) :1761-1772
[17]   The quantum theory and five-dimensional relativity theory [J].
Klein, O .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (12) :895-906
[18]   MORE DIMENSIONS - LESS ENTROPY [J].
KOLB, EW ;
LINDLEY, D ;
SECKEL, D .
PHYSICAL REVIEW D, 1984, 30 (06) :1205-1213
[19]  
LEMKE H, 1935, PUBL MATH BELGRADE, V4, P201
[20]   On a first order differential equation [J].
Liouville, R .
ACTA MATHEMATICA, 1903, 27 (01) :55-78