REAL FORMS OF COMPLEX QUANTUM ANTI-DE-SITTER ALGEBRA UQ(SP(4-C)) AND THEIR CONTRACTION SCHEMES

被引:82
作者
LUKIERSKI, J
NOWICKI, A
RUEGG, H
机构
[1] Département de Physique Théorique, Université de Genève, CH-1211 Geneva 4
关键词
D O I
10.1016/0370-2693(91)90094-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe four types of inner involutions of the Cartan-Weyl basis providing (for \q\ = 1 and q real) three types of real quantum Lie algebras: U(q)(O(3,2)) (quantum D = 4 anti-de-Sitter), U(q)(O(4,1)) (quantum D = 4 de-Sitter) and U(q)(O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of U(q)(Sp(4; C)) which cannot be extended to inner involutions of the Cartan-Weyl basis. We outline twelve contraction schemes for quantum D = 4 anti-de-Sitter algebra. All these contractions provide four commuting translation generators, but only two (one for \q\ = 1, the second for q real) lead to the quantum Poincare algebra with an undeformed space rotation O(3) subalgebra.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 24 条
[1]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[2]  
CAROWWATAMURA V, 1991, INT J MOD PHYS A, V6, P3081
[3]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[4]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[5]  
CELEGHINI E, DFF139691 FIR U PREP
[6]  
CELEGHINI E, 1990, IN PRESS CONTRIB 1ST
[7]  
DRINFELD WG, 1986, P INT C MATH BERKELE, P703
[8]  
Faddeev L., 1990, LENINGRAD MATH J, V1, P193
[9]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB
[10]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222