STABLE BLOW-UP PATTERNS

被引:39
作者
BRESSAN, A
机构
[1] Department of Mathematics, University of Colorado, Boulder
关键词
D O I
10.1016/0022-0396(92)90104-U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the semilinear heat equation ut = Δu + eu in a convex domain Ω ⊂ Rn, given any b ε{lunate} Ω we show the existence of solutions which blow up in finite time exactly at b and whose final profile has the form u(T, x) ≈ -2 ln |x - b| + ln |ln |x - b|| + ln 8, T being the blow-up time. Using a suitable set of rescaled coordinates, this asymptotic behavior is proved to be stable with respect to small perturbations of the initial conditions. © 1992.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 15 条
[1]  
BEBERNES J, 1987, INDIANA U MATH J, V36, P131
[2]  
Bebernes J., 1989, MATH PROBLEMS COMBUS, V83
[3]   A MATHEMATICAL-ANALYSIS OF BLOWUP FOR THERMAL-REACTIONS - THE SPATIALLY NON-HOMOGENEOUS CASE [J].
BEBERNES, JW ;
KASSOY, DR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (03) :476-484
[4]   ON THE ASYMPTOTIC SHAPE OF BLOW-UP [J].
BRESSAN, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :947-960
[5]   ANALYSIS OF THE EARLY STAGE OF THERMAL RUNAWAY [J].
DOLD, JW .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1985, 38 (AUG) :361-387
[6]  
FILIPPAS S, CENTER MANIFOLD ANAL
[7]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[8]  
Galaktionov V. A., 1986, DIFF URAVN, V22, P1285
[9]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[10]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40