PHYSICOCHEMICAL STUDIES OF THE D(G(3)T(4)G(3))ASTERISK-D(G(3)A(4)G(3))CENTER-DOT-D(C3T4C3) TRIPLE-HELIX

被引:34
作者
SCARIA, PV
WILL, S
LEVENSON, C
SHAFER, RH
机构
[1] UNIV CALIF SAN FRANCISCO, SCH PHARM, DEPT PHARMACEUT CHEM, SAN FRANCISCO, CA 94143 USA
[2] ROCHE MOLEC SYST, ALAMEDA, CA 94501 USA
关键词
D O I
10.1074/jbc.270.13.7295
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have targeted the d(G(3)A(4)G(3)). d(C3T4C3) duplex for tripler formation with d(G(3)T(4)G(3)) in the presence of MgCl2. The resulting triple helix, d(G(3)T(4)G(3))*d(G(3)-A(4)G(3)) . d(C3T4C3), is considerably weaker than the related tripler, d(G(3)A(4)G(3))*d(G(3)A(4)G(3)). d(C3T4C3), and melts in a biphasic manner, with the third strand dissociating at temperatures about 20-30 degrees C below that of the remaining duplex. This is in distinct contrast to the d(G(3)A(4)G(3))*d(G(3)A(4)G(3)). d(C3T4C3) tripler, which melts in essentially a single transition, Gel electrophoresis under non-denaturing conditions shows the presence of the d(G(3)T(4)G(3))*d(G(3)A(4)G(3)). d(C3T4C3) tripler as a band of low mobility compared to the duplex or the single strand bands. Binding of the d(G(3)T(4)G(3)) third strand and the purine strand of the duplex can be monitored by imino proton NMR spectra, While these spectra are typically very broad for intermolecular triplexes, the line widths can be dramatically narrowed by the addition of two thymines to both ends of the pyrimidine strand, Ther modynamic analysis of UV melting curves shows that this tripler is considerably less stable than related triplexes formed with the same duplex, The orientation of the third strand was addressed by a combination of fluorescence energy transfer and UV melting experiments, Results from these experiments suggest that, in the unlabeled tripler, the preferred orientation of the third strand is parallel to the purine strand of the duplex.
引用
收藏
页码:7295 / 7303
页数:9
相关论文
共 39 条
[21]  
Radhakrishnan I., De Los Santos C., Patel D.J., J. Mol. Biol., 221, pp. 1403-1418, (1991)
[22]  
Dagneau C., Liquier J., Scaria P.V., Shafer R.H., Taillandier E., Proceedings of the Eighth Conversation, State University of New York, Albany NY, pp. 103-111, (1994)
[23]  
Griswold B.L., Humoller F.L., MacIntyre A.R., Anal. Chem., 23, pp. 192-194, (1951)
[24]  
Levenson C., Chang C., PCR Protocols: a Guide to Methods and Applications, pp. 99-112, (1990)
[25]  
Scaria P.V., Shire S.J., Shafer R.H., Proc. Natl. Acad. Sci. U. S. A., 89, pp. 10336-10340, (1992)
[26]  
Clegg R.M., Methods Enzymol, 211, pp. 353-388, (1992)
[27]  
Clegg R.M., Murchie A.I., Zechel A., Lilley D.M., Proc. Natl. Acad. Sci. U. S. A., 90, pp. 2994-2998, (1993)
[28]  
Mergny J.L., Boutorine A.S., Garestier T., Belloc F., Rougee M., Bulychev N.V., Koshkin A.A., Bourson J., Lebedev A.V., Valeur B., Thuong N.T., Helene C., Nucleic Acids Res., 22, pp. 920-928, (1994)
[29]  
Cooper J.P., Hagerman P.J., Biochemistry, 29, pp. 9261-9268, (1990)
[30]  
Marck C., Thiele D., Schneider C., Guschlbauer W., Nucleic Acids Res., 5, pp. 1979-1996, (1978)