AXIOMATIC PRICE-INDEX THEORY - A SURVEY

被引:75
作者
BALK, BM
机构
关键词
AXIOMS; PRICE INDEX; QUANTITY INDEX; TESTS;
D O I
10.2307/1403778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides a survey of the so called 'axiomatic price (and quantity) index theory'. Within this theory a price index is a function of base period and comparison period prices and quantities, on which certain requirements (axioms and/or tests) are imposed. The main conclusions are (a) the requirement of circularity implies that price indices cannot depend on base period or comparison period quantities; (b) the evidence for choosing the Fisher price index as the ultimate index is not conclusive; (c) the use of Laspeyres and Paasche indices in official statistical systems can be legitimized.
引用
收藏
页码:69 / 93
页数:25
相关论文
共 55 条
[31]  
Krtscha M., 1979, THESIS U FRIDERICIAN
[32]  
Laspeyres K., 1871, JAHRB NATL STAT, V16, P296, DOI [10.1515/jbnst-1871-0124, DOI 10.1515/JBNST-1871-0124]
[33]  
Montgomery J.K., 1937, MATH PROBLEM PRICE I
[34]  
PFOUTS R, 1966, INT STAT REV, V34, P174
[35]  
PIERSON NG, 1896, VERSPREIDE GESCHRIFT
[36]   REMEMBRANCES OF FRISCH [J].
SAMUELSON, PA .
EUROPEAN ECONOMIC REVIEW, 1974, 5 (01) :7-23
[37]  
SAMUELSON PA, 1974, AM ECON REV, V64, P566
[38]  
SCHOCH H, 1984, METHODS OPERATIONS R, V48
[39]   A NEW INDEX NUMBER FORMULA [J].
STUVEL, G .
ECONOMETRICA, 1957, 25 (01) :123-131
[40]  
STUVEL G, 1989, INDEX NUMBER PROBLEM