SOQ(N) COVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM SPACE AND QUANTUM DEFORMATION OF SCHRODINGER-EQUATION

被引:88
作者
CAROWWATAMURA, U
SCHLIEKER, M
WATAMURA, S
机构
[1] Institute for Theoretical Physics, Karlsruhe University, Karlsruhe, W-7500
来源
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS | 1991年 / 49卷 / 03期
关键词
D O I
10.1007/BF01549697
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a differential calculus on the N-dimensional non-commutative Euclidean space, i.e., the space on which the quantum group SO(q)(N) is acting. The differential calculus is required to be manifestly covariant under SO(q)(N) transformations. Using this calculus, we consider the Schrodinger equation corresponding to the harmonic oscillator in the limit of q --> 1. The solution of it is given by q-deformed functions.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 26 条
  • [1] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [2] BIRMAN J, 1987, BRAIDS LINKS POLYNOM
  • [3] TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE
    CAROWWATAMURA, U
    SCHLIEKER, M
    SCHOLL, M
    WATAMURA, S
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01): : 159 - 165
  • [4] CARROWWATAMURA U, IN PRESS INT J MED A
  • [5] DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
  • [6] EXTON H, 1990, 300 JAHRFEIER MATH G
  • [7] Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
  • [8] JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
  • [9] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [10] A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION
    JIMBO, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) : 63 - 69