LACUNARITY AS A TEXTURE MEASURE FOR SAR IMAGERY

被引:58
作者
HENEBRY, GM [1 ]
KUX, HJH [1 ]
机构
[1] KANSAS STATE UNIV,MANHATTAN,KS 66506
基金
美国国家科学基金会;
关键词
D O I
10.1080/01431169508954422
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Lacunarity analysis is a simple technique for characterizing texture in binary images. Lacunarity quantifies deviation from translational invariance by describing the distribution of gaps within the image at multiple scales: the more lacunar an image, the more heterogeneous the spatial arrangement of gaps. For grey-leel data, a series of binary images are formed through slicing the image histogram by quantiles. Characteristic decays of lacanarity as a function of window size permit scene object texture to be distinguished from speckle. Using a series of ERS-1 SAR images of the Brazilian Pantanal, we demonstrate how lacunarity functions can link image phenomenology with scene dynamics.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 14 条
  • [1] ENVIRONMENTAL DEGRADATION IN THE PANTANAL ECOSYSTEM - IN BRAZIL, THE WORLDS LARGEST WETLAND IS BEING THREATENED BY HUMAN ACTIVITIES
    ALHO, CJR
    LACHER, TE
    GONCALVES, HC
    [J]. BIOSCIENCE, 1988, 38 (03) : 164 - 171
  • [2] BARBER DG, 1991, PHOTOGRAMM ENG REM S, V57, P385
  • [3] Haralick RM., 1992, COMPUTER ROBOT VISIO, V1
  • [4] DETECTING CHANGE IN GRASSLANDS USING MEASURES OF SPATIAL DEPENDENCE WITH LANDSAT TM DATA
    HENEBRY, GM
    [J]. REMOTE SENSING OF ENVIRONMENT, 1993, 46 (02) : 223 - 234
  • [5] A MICROWAVE-SCATTERING MODEL FOR LAYERED VEGETATION
    KARAM, MA
    FUNG, AK
    LANG, RH
    CHAUHAN, NS
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (04): : 767 - 784
  • [6] Mandelbrot B.B., 1983, AMJPHYS
  • [7] LACUNARITY INDEXES AS MEASURES OF LANDSCAPE TEXTURE
    PLOTNICK, RE
    GARDNER, RH
    ONEILL, RV
    [J]. LANDSCAPE ECOLOGY, 1993, 8 (03) : 201 - 211
  • [8] CHARACTERIZATION OF SPATIAL STATISTICS OF DISTRIBUTED TARGETS IN SAR DATA
    RIGNOT, E
    KWOK, R
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (02) : 345 - 363
  • [9] RIZZINI CT, 1988, ECOSSITEMAS BRASILEI
  • [10] SHEEN DR, 1992, IEEE T GEOSCI REMOTE, V30, P568