SUFFICIENT OPTIMALITY CONDITIONS FOR PONTRYAGIN EXTREMALS

被引:5
作者
SARYCHEV, AV
机构
[1] ACAD SCI,INST CONTROL SCI,MOSCOW 117342,USSR
[2] UNIV WURZBURG,INST MATH,W-8700 WURZBURG,GERMANY
关键词
OPTIMAL CONTROL; PONTRYAGIN EXTREMALS; THEORY OF 2ND VARIATION; INDEX AND NULLITY THEOREMS; SUFFICIENT OPTIMALITY CONDITIONS;
D O I
10.1016/0167-6911(92)90076-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
L1-local optimality of a given control u(.) in an optimal control problem for an affine control system with bounded controls is investigated. Starting from the Pontryagin Maximum Principle, which is a first-order necessary optimality condition, we develop it in two directions: (1) "tending the notions of lst and 2nd variations of the system along u(.), we obtain 1st and 2nd-order sufficient optimality conditions for bang-bang Pontryagin extremals; (2) developing Legendre-Jacobi-Morse-type results for the extended second variation we obtain 2nd-order sufficient optimality conditions for general (bang-bang-singular) type of Pontryagin extremals.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 12 条
[1]  
AGRACHEV AA, 1990, PURE A MATH, V133, P263
[2]   LOCAL INVARIANTS OF SMOOTH CONTROL-SYSTEMS [J].
AGRACHEV, AA ;
GAMKRELIDZE, RV ;
SARYCHEV, AV .
ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (03) :191-237
[3]  
AGRACHEV AA, 1988, ITOGI NAUKI TEKHN PG, V20, P111
[4]   A HIGH-ORDER TEST FOR OPTIMALITY OF BANG BANG CONTROLS [J].
BRESSAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (01) :38-48
[5]  
DMITRUK A. V., 1986, IZV AKAD NAUK SSSR M, V50, P284
[6]  
Pontryagin L. S., 1986, MATH THEORY OPTIMAL
[7]   HIGH-ORDER NECESSARY CONDITIONS OF OPTIMALITY FOR NONLINEAR CONTROL-SYSTEMS [J].
SARYCHEV, AV .
SYSTEMS & CONTROL LETTERS, 1991, 16 (05) :369-378
[8]  
SARYCHEV AV, 1988, J DIFFER EQUATIONS, V24, P1021
[9]  
SARYCHEV AV, 1992, 382 REP
[10]  
SARYCHEV AV, 1991, NONLINEAR SYNTHESIS, P244