Local Invariant Feature Detectors: A Survey

被引:909
作者
Tuytelaars, Tinne [1 ]
Mikolajczyk, Krystian [2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
[2] Univ Surrey, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England
来源
FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION | 2007年 / 3卷 / 03期
关键词
D O I
10.1561/0600000017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this survey, we give an overview of invariant interest point detectors, how they evolved over time, how they work, and what their respective strengths and weaknesses are. We begin with defining the properties of the ideal local feature detector. This is followed by an overview of the literature over the past four decades organized in different categories of feature extraction methods. We then provide a more detailed analysis of a selection of methods which had a particularly significant impact on the research field. We conclude with a summary and promising future research directions.
引用
收藏
页码:177 / 280
页数:33
相关论文
共 261 条
  • [11] Bajcsy R.K., 1973, COMPUTER GRAPHICS IM, V2, P118
  • [12] Using Learning to Facilitate the Evolution of Features for Recognizing Visual Concepts
    Bala, J.
    De Jong, K.
    Huang, J.
    Vafaie, H.
    Wechsler, H.
    [J]. EVOLUTIONARY COMPUTATION, 1996, 4 (03) : 297 - 311
  • [13] Bauer J., 2004, INT SOC PHOTOGRAMMET
  • [14] Baumberg A, 2000, PROC CVPR IEEE, P774, DOI 10.1109/CVPR.2000.855899
  • [15] Bay H., 2006, COMPUTER VISIONECCV, P404, DOI DOI 10.1007/11744023_32
  • [16] SURF: Speeded up robust features
    Bay, Herbert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 404 - 417
  • [17] Beaudet P. R., 1978, Proceedings of the 4th International Joint Conference on Pattern Recognition, P579
  • [18] Belongie S, 2001, ADV NEUR IN, V13, P831
  • [19] BEUS HL, 1987, PATTERN RECOGN, V20, P291, DOI 10.1016/0031-3203(87)90004-5
  • [20] Beymer D. J., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P720, DOI 10.1109/CVPR.1991.139798