Assessment of the roles of the carboxyl-terminal beta-146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta-146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His 146-beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta-146His --> Leu) and York (beta-146His --> Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta-146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta-146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta-146His --> Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta-146 histidyl residues and the negative contribution of the beta-2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta-146 histidyl residues. Our results show that the pK values of beta-146 histidyl residues in the carbonmonoxy form of hemoglobin are substantially affected by the presence of chloride and other anions in the solvent, and thus, the contribution of this amino acid residue to the alkaline Bohr effect can be shown to vary widely in magnitude, depending on the solvent composition. These results demonstrate that the detailed molecular mechanisms of the alkaline Bohr effect are not unique but are affected both by the hemoglobin structure and by the interactions with the solvent components in which the hemoglobin molecule resides. The implication of these results is that one needs to consider both the macroscopic and microscopic properties of a protein molecule before one can fully and accurately understand the molecular basis of its biological function.