UNCERTAINTY RELATION IN QUANTUM-MECHANICS WITH QUANTUM GROUP SYMMETRY

被引:357
作者
KEMPF, A
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge
关键词
D O I
10.1063/1.530798
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The commutation relations, uncertainty relations, and spectra of position and momentum operators were studied within the framework of quantum group symmetric Heisenberg algebras and their (Bargmann) Fock representations. As an effect of the underlying noncommutative geometry, a length and a momentum scale appear, leading to the existence of nonzero minimal uncertainties in the positions and momenta. The usual quantum mechanical behavior is recovered as a limiting case for not too small and not too large distances and momenta.
引用
收藏
页码:4483 / 4496
页数:14
相关论文
共 26 条
[1]  
Akhiezer N. I., 1963, THEORY LINEAR OPERAT
[2]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[3]   PATH INTEGRAL ON THE QUANTUM PLANE [J].
BAULIEU, L ;
FLORATOS, EG .
PHYSICS LETTERS B, 1991, 258 (1-2) :171-178
[4]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[5]   SUPERCOVARIANT SYSTEMS OF Q-OSCILLATORS AND Q-SUPERSYMMETRIC HAMILTONIANS [J].
CHAICHIAN, M ;
KULISH, P ;
LUKIERSKI, J .
PHYSICS LETTERS B, 1991, 262 (01) :43-48
[6]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[7]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
[8]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[9]  
GARAY LJ, 1994, GRCQ9403008 PREPR
[10]  
HEBECKER A, 1992, 19 P S AHR