BOUNDED SPATIAL EXTENSION OF THE SELF-SIMILAR COLLAPSING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION

被引:3
作者
BERGE, L [1 ]
PESME, D [1 ]
机构
[1] ECOLE POLYTECH,CTR PHYS THEOR,F-91128 PALAISEAU,FRANCE
来源
PHYSICA SCRIPTA | 1993年 / 47卷 / 03期
关键词
D O I
10.1088/0031-8949/47/3/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explicitly determine the asymptotic behavior of the radially symmetric collapsing solutions that obey the nonstationary linear problem of the 2D and 3D nonlinear Schrodinger equation. These collapsing solutions are shown to converge toward their exactly self-similar limit within a spatial domain bounded from the top by a cut-off radius only.
引用
收藏
页码:323 / 327
页数:5
相关论文
共 24 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS, P686
[2]   TIME-DEPENDENT SOLUTIONS OF WAVE COLLAPSE [J].
BERGE, L ;
PESME, D .
PHYSICS LETTERS A, 1992, 166 (02) :116-122
[3]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[4]  
FRAIMAN GM, 1985, ZH EKSP TEOR FIZ, V61, P228
[5]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[6]   VIRIAL THEORY OF DIRECT LANGMUIR COLLAPSE [J].
GOLDMAN, MV ;
NICHOLSON, DR .
PHYSICAL REVIEW LETTERS, 1978, 41 (06) :406-410
[7]   SELF-FOCUSSING OF LASER-BEAM IN NON-LINEAR MEDIA [J].
KONNO, K ;
SUZUKI, H .
PHYSICA SCRIPTA, 1979, 20 (3-4) :382-386
[8]   COMPUTER-SIMULATION OF WAVE COLLAPSES IN THE NONLINEAR SCHRODINGER-EQUATION [J].
KOSMATOV, NE ;
SHVETS, VF ;
ZAKHAROV, VE .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 52 (01) :16-35
[9]   RATE OF BLOWUP FOR SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AT CRITICAL DIMENSION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICAL REVIEW A, 1988, 38 (08) :3837-3843
[10]   STABILITY OF ISOTROPIC SINGULARITIES FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL ;
WANG, XP .
PHYSICA D, 1991, 47 (03) :393-415