GEOSTROPHIC TURBULENCE

被引:378
作者
RHINES, PB
机构
关键词
GEOSTROPHIC;
D O I
10.1146/annurev.fl.11.010179.002153
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The geostrophic-balance equation is a singular perturbation with respect to neglected accelerations and frictional forces. The curl of the full momentum equation is unaffected by the dominant part of the pressure force and gives a fully predictive potential vorticity equation. The derivation of the vorticity equations appropriate to a spherical planet is a length process; here the author takes them as given. The dominant small parameters are Ro, the fluid depth/planetary radius, the aspect ratio of the motion, H/L, and the ratio of Coriolis to buoyancy forces.
引用
收藏
页码:401 / 441
页数:41
相关论文
共 91 条
[31]  
HOLLOWAY G, 1977, J FLUID MECH, V76, P617
[32]  
HOLLOWAY G, 1976, THESIS U CALIF
[33]  
HOLTON JR, 1976, J ATMOS SCI, V33, P1639, DOI 10.1175/1520-0469(1976)033<1639:ASSNMF>2.0.CO
[34]  
2
[35]  
HOSKINS BJ, 1972, J ATMOS SCI, V29, P11, DOI 10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO
[36]  
2
[37]  
IBBETSON A, 1975, J FLUID MECH, V67, P444
[38]   INERTIAL RANGES IN 2-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1967, 10 (07) :1417-+
[39]   STATISTICAL DYNAMICS OF 2-DIMENSIONAL FLOW [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN14) :155-175
[40]   ALMOST-MARKOVIAN GALILEAN-INVARIANT TURBULENCE MODEL [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1971, 47 (JUN14) :513-+