GEOMETRIC PHASE FOR CYCLIC MOTIONS AND THE QUANTUM STATE-SPACE METRIC

被引:53
作者
ANANDAN, J
机构
[1] Max-Planck-Institute for Physics and Astrophysics, D-8000 Munich 10
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(90)90003-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometric phase is generalized to a cyclic motion resulting from any one-parameter family of transformations in the Hilbert space. This is applied to the translation in one spatial dimension of the Bloch wave function. Physical meanings are given to the Fubini-Study metric on the projective Hilbert space, and a metric in the classical phase space is deduced as the classical limit of this quantum metric. © 1990.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 14 条
[1]   MEANING OF AN INDIVIDUAL FEYNMAN PATH [J].
AHARONOV, Y ;
VARDI, M .
PHYSICAL REVIEW D, 1980, 21 (08) :2235-2240
[2]   PROPERTIES OF A QUANTUM SYSTEM DURING THE TIME INTERVAL BETWEEN 2 MEASUREMENTS [J].
AHARONOV, Y ;
VAIDMAN, L .
PHYSICAL REVIEW A, 1990, 41 (01) :11-20
[3]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[4]   GEOMETRIC QUANTUM PHASE AND ANGLES [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW D, 1988, 38 (06) :1863-1870
[5]  
ANANDAN J, 1988, ANN I H POINCARE-PHY, V49, P271
[6]  
ANANDAN J, IN PRESS
[8]  
Dirac P. A. M, 1930, PRINCIPLES QUANTUM M
[9]  
KOBAYSHI S, 1969, F DIFFERENTIAL GEOME
[10]   ISOHOLONOMIC PROBLEMS AND SOME APPLICATIONS [J].
MONTGOMERY, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (03) :565-592