SL(2,R) YANG-MILLS THEORY ON A CIRCLE

被引:2
作者
BENGTSSON, I
HALLIN, J
机构
[1] CHALMERS UNIV TECHNOL,INST THEORET PHYS,S-41296 GOTHENBURG,SWEDEN
[2] GOTHENBURG UNIV,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.1142/S0217732394003063
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinematic of SL(2,R) Yang-Mills theory on a circle is considered, for reasons that are spelt out. The gauge transformations exhibit hyperbolic fixed points, and this results in a physical configuration space with a non-Hausdorff ''network'' topology. The ambiguity encountered in canonical quantization is then much more pronounced than in the compact case and cannot be resolved through the kind of appeal made to group theory in that case.
引用
收藏
页码:3245 / 3253
页数:9
相关论文
共 16 条
[1]   DYNAMICS OF AND SUPERSELECTION RULES ON ONE-DIMENSIONAL MULTIPLY CONNECTED SYSTEMS [J].
ANEZIRIS, CN .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (13) :2289-2307
[2]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[3]   COMPLETENESS OF WILSON LOOP FUNCTIONALS ON THE MODULI SPACE OF SL(2, C) AND SU(1, 1) CONNECTIONS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (06) :L69-L74
[4]  
AVRON JE, 1990, ANOMALIES PHASES DEF
[5]   STATISTICS ON NETWORKS [J].
BALACHANDRAN, AP ;
ERCOLESSI, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (19) :4633-4654
[6]   QUANTUM-MECHANICAL SPLITTERS - HOW SHOULD ONE UNDERSTAND THEM [J].
EXNER, P ;
SEBA, P .
PHYSICS LETTERS A, 1988, 128 (09) :493-496
[7]  
HALLIN J, IN PRESS CLASS QUANT
[8]   YANG-MILLS THEORY ON A CIRCLE [J].
HETRICK, JE ;
HOSOTANI, Y .
PHYSICS LETTERS B, 1989, 230 (1-2) :88-92
[9]  
HETRICK JE, IN PRESS NUCL PHYS B
[10]   GRIBOV AMBIGUITY AND NONTRIVIAL VACUUM-STRUCTURE OF GAUGE-THEORIES ON A CYLINDER [J].
LANGMANN, E ;
SEMENOFF, GW .
PHYSICS LETTERS B, 1993, 303 (3-4) :303-307