EQUILIBRIUM SHAPES OF CRYSTALS ATTACHED TO WALLS

被引:17
作者
KOTECKY, R
PFISTER, CE
机构
[1] CHARLES UNIV,DEPT THEORET PHYS,CS-18000 PRAGUE 8,CZECH REPUBLIC
[2] EPFL,DEPT MATH,CH-1015 LAUSANNE,SWITZERLAND
关键词
WULFF CONSTRUCTION; EQUILIBRIUM CRYSTAL SHAPES; WINTERBOTTOM CONSTRUCTION;
D O I
10.1007/BF02188669
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss equilibrium shapes of crystals attached to walls. Optimal shapes for different configurations of walls are found and the minimality of the overall surface tension is proven with the help of a simple geometrical argument based on the isoperimetric inequality and monotonicity. Stability results in the form of Bonnesen inequalities are obtained in the two-dimensional case.
引用
收藏
页码:419 / 445
页数:27
相关论文
共 25 条
[1]   CRITICAL-POINT WETTING [J].
CAHN, JW .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (08) :3667-3672
[2]  
Curie P, 1885, B SOC MINERAL FRANCE, V8, P145
[3]  
DACOROGNA B, 1992, J MATH PURE APPL, V71, P97
[4]  
DECONINCK J, 1993, NONTYPICAL WULFF SHA
[5]  
DECONINCK J, 1993, DOUBLE WOLFF CONSTRU
[6]   On Wulff's geometric theorem for the balanced form of crystals [J].
Dinghas, A .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1944, 105 (04) :304-314
[7]  
Dobrushin R., 1992, WULFF CONSTRUCTION G
[8]  
DOBRUSHIN RL, 1992, IDEAS METHODS MATH A, V2
[9]  
FEDERER H, 1969, GEOMETRIC MEASURE TH
[10]   THE WULFF THEOREM REVISITED [J].
FONSECA, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1884) :125-145