INFINITE TREES IN NORMAL FORM AND RECURSIVE EQUATIONS HAVING A UNIQUE SOLUTION

被引:35
作者
COURCELLE, B
机构
[1] Mathématiques-Informatique, Université de Bordeaux-I, Talence, 33405, Cedex
来源
MATHEMATICAL SYSTEMS THEORY | 1979年 / 13卷 / 02期
关键词
D O I
10.1007/BF01744293
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A system of recursive equations is C-univocal if it has a unique solution modulo the equivalence associated with a class C of interpretations. This concept yields simplified proofs of equivalence of recursive program schemes and correctness criteria for the validity of certain program transformations, provided one has syntactic easily testable conditions for C-univocality. Such conditions are given for equational classes of interpretations. They rest upon another concept: the normal form of an infinite tree with respect to a tree rewriting system. This concept yields a simplified construction of the Herbrand interpretation of certain equational classes of interpretations. © 1979 Springer-Verlag New York Inc.
引用
收藏
页码:131 / 180
页数:50
相关论文
共 38 条
  • [21] KOTT L, 1978, TRANSFORMATIONS PROG
  • [22] KNOWLEDGE AND REASONING IN PROGRAM SYNTHESIS
    MANNA, Z
    WALDINGER, R
    [J]. ARTIFICIAL INTELLIGENCE, 1975, 6 (02) : 175 - 208
  • [23] FIXPOINT APPROACH TO THEORY OF COMPUTATION
    MANNA, Z
    VUILLEMIN, J
    [J]. COMMUNICATIONS OF THE ACM, 1972, 15 (07) : 528 - +
  • [24] BASES FOR CHAIN-COMPLETE POSETS
    MARKOWSKY, G
    ROSEN, BK
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1976, 20 (02) : 138 - 147
  • [25] McCarthy J., 1962, P INT C INF PROC PAL, P27
  • [26] MCCARTHY J, 1963, COMPUTER PROGRAMMING
  • [27] MESEGUER J, 1978, UCLA13 REP
  • [28] MILNER R, 1977, CSR577 REP
  • [29] Nivat M., 1975, S MAT, V15, P255
  • [30] ODONNELL M, 1977, LECTURE NOTES COMPUT, P58