Fine ceramics have been recognized increasingly in structural and functional applications on account of their merits of hardness, corrosion resistance, electromagnetic response and bio-compatability. Due to the need for dimensional control or production optimization, post-sintering machining can be required. Cutting by conventional means is most often practiced, but the associated heavy tool wear is hard to overcome. A waterjet at transonic speed carrying abrasive particles provides an effective means for hard-material removal. Undesired material fracture at entrance and exit can be reduced significantly by sequential abrasive micro-machining. The present paper discusses the kerf formation of a ceramic plate cut by an abrasive waterjet. The mechanism and the effectiveness of material removal are studied first. Different materials are found to possess different removal rates in machining and there also exists a critical combination of hydraulic pressure, abrasive flow rate and traverse speed, below which through-cut for a certain thickness cannot be achieved. The wall finish achieved is determined by the mesh size of the abrasives: sufficient hydraulic pressure with fine abrasives will produce a smooth surface comparable to that from grinding. The kerf is slightly tapered with wider entry due to decreased cutting energy with kerf depth. A high-power input per unit length produces a small taper but a wide slot.