APPLYING ALGORITHMIC COMPLEXITY TO DEFINE CHAOS IN THE MOTION OF COMPLEX-SYSTEMS

被引:16
作者
CRISANTI, A
FALCIONI, M
MANTICA, G
VULPIANI, A
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-22100 COMO,ITALY
[2] IST NAZL FIS NUCL,ROME,ITALY
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 03期
关键词
D O I
10.1103/PhysRevE.50.1959
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define chaotic motion for dynamical systems acting in finite, discrete spaces via the deterministic randomness of their trajectories. The theory of algorithmic complexity is used to provide the meaning of randomness for symbolic sequences derived from these trajectories, and a practical test of randomness is devised on the basis of an ideal, physically motivated, model of a computer. Two examples-a discretized standard map, and a fully connected neural network-are studied analytically and numerically.
引用
收藏
页码:1959 / 1967
页数:9
相关论文
共 40 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]  
[Anonymous], 1989, MODELING BRAIN FUNCT
[3]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[4]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[5]   SCALING BEHAVIOR OF RANDOM MAPS [J].
BECK, C .
PHYSICS LETTERS A, 1989, 136 (03) :121-125
[6]  
Brudno A. A., 1978, RUSSIAN MATH SURVEYS, V33, P197, DOI [10.1070/RM1978v033n01ABEH002243, 10.1070/rm1978v033n01abeh0022432-s2.0-77951203081, DOI 10.1070/RM1978V033N01ABEH0022432-S2.0-77951203081]
[7]  
Chirikov B. V., 1981, SOVIET SCI REV C, V2, P209
[8]   ON THE EFFECTS OF AN UNCERTAINTY ON THE EVOLUTION LAW IN DYNAMICAL-SYSTEMS [J].
CRISANTI, A ;
FALCIONI, M ;
VULPIANI, A .
PHYSICA A, 1989, 160 (03) :482-502
[9]   LAGRANGIAN CHAOS - TRANSPORT, MIXING AND DIFFUSION IN FLUIDS [J].
CRISANTI, A ;
FALCIONI, M ;
VULPIANI, A ;
PALADIN, G .
RIVISTA DEL NUOVO CIMENTO, 1991, 14 (12) :1-80
[10]   TRANSITION FROM REGULAR TO COMPLEX BEHAVIOR IN A DISCRETE DETERMINISTIC ASYMMETRIC NEURAL-NETWORK MODEL [J].
CRISANTI, A ;
FALCIONI, M ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (14) :3441-3453