APPLYING ALGORITHMIC COMPLEXITY TO DEFINE CHAOS IN THE MOTION OF COMPLEX-SYSTEMS

被引:16
作者
CRISANTI, A
FALCIONI, M
MANTICA, G
VULPIANI, A
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-22100 COMO,ITALY
[2] IST NAZL FIS NUCL,ROME,ITALY
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 03期
关键词
D O I
10.1103/PhysRevE.50.1959
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define chaotic motion for dynamical systems acting in finite, discrete spaces via the deterministic randomness of their trajectories. The theory of algorithmic complexity is used to provide the meaning of randomness for symbolic sequences derived from these trajectories, and a practical test of randomness is devised on the basis of an ideal, physically motivated, model of a computer. Two examples-a discretized standard map, and a fully connected neural network-are studied analytically and numerically.
引用
收藏
页码:1959 / 1967
页数:9
相关论文
共 40 条
[21]  
Hannay J. H., 1980, Physica D, V1D, P267, DOI 10.1016/0167-2789(80)90026-3
[22]   PROBABILITY-DISTRIBUTIONS RELATED TO RANDOM MAPPINGS [J].
HARRIS, B .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1045-1062
[23]   METABOLIC STABILITY AND EPIGENESIS IN RANDOMLY CONSTRUCTED GENETIC NETS [J].
KAUFFMAN, SA .
JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (03) :437-&
[24]   SOME REMARKS ABOUT COMPUTER STUDIES OF DYNAMICAL-SYSTEMS [J].
LEVY, YE .
PHYSICS LETTERS A, 1982, 88 (01) :1-3
[25]  
Mantica G., 1989, Complex Systems, V3, P37
[26]  
MANTICA G, 1992, NATO ADV STUDY I S C, V358
[27]  
Mantica Giorgio, 1992, Chaos, V2, P225, DOI 10.1063/1.165908
[28]   THE LENGTH OF ATTRACTORS IN ASYMMETRIC RANDOM NEURAL NETWORKS WITH DETERMINISTIC DYNAMICS [J].
NUTZEL, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :L151-L157
[29]  
PALADIN G, 1986, J PHYS A, V19, P997
[30]   ARITHMETICAL PROPERTIES OF STRONGLY CHAOTIC MOTIONS [J].
PERCIVAL, I ;
VIVALDI, F .
PHYSICA D, 1987, 25 (1-3) :105-130