AGGREGATION PHENOMENA IN THE SUSPENSION POLYMERIZATION OF VCM

被引:5
作者
DIAMADOPOULOS, E
ZOUBOURTIKOUDIS, I
KIPARISSIDES, C
机构
[1] ARISTOTELIAN UNIV SALONIKA,CHEM PROC ENGN RES INST,POB 472,GR-54006 SALONIKA,GREECE
[2] ARISTOTELIAN UNIV SALONIKA,DEPT CHEM ENGN,GR-54006 SALONIKA,GREECE
关键词
aggregation; polymerization; primary particles; PVC;
D O I
10.1007/BF01411673
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the suspension polymerization of VCM, insoluble polymer particles are formed inside the monomer droplets. The growth and aggregation of these particles are responsible for important polymer properties, such as porosity. It is well established that the most characteristic polymer particles, the primary particles, are of a narrow distribution with a size (diameter) ranging from 0.10-0.20 μm. This work studied the formation of primary particles based on the aggregation phenomena that take place inside a monomer droplet. This was done by formulating a population balance equation, which was based on the following considerations: a) polymerization occurs in both the monomer and the polymer phases; b) there is continuous formation of the basic particles in the monomer phase; c) the growth of the polymer particles occurs as a result of both polymerization in the polymer phase and aggregation of the particles; d) the colloidal properties of the particles that are responsible for the aggregation phenomena were considered to be the net result of attraction and repulsion energies. It was shown that for particles carrying a constant charge it was not possible to predict the formation of primary particles of size 0.10-0.20 μm. The particle size distribution had a mode diameter equal to the diameter of the basic particles. Consequently, the particle charge was allowed to vary in a way proportional to the particle radius raised to a power coefficient. For values of the coefficient greater than zero, i. e., when the particle charge increased during polymerization, the aggregation of the basic particles was efficient enough to result in the formation of large primary particles. © 1990 Steinkopff.
引用
收藏
页码:306 / 314
页数:9
相关论文
共 29 条
[21]  
TALAMINI G, 1966, J POLYM SCI A, V2, P535
[22]   FORMATION OF PRIMARY PARTICLES IN VINYL-CHLORIDE POLYMERIZATION [J].
TORNELL, B ;
UUSTALU, J .
JOURNAL OF APPLIED POLYMER SCIENCE, 1988, 35 (01) :63-74
[23]   COLLOIDAL STABILITY OF PVC PRIMARY PARTICLES IN VINYL-CHLORIDE [J].
TORNELL, B ;
UUSTALU, JM ;
JONSSON, B .
COLLOID AND POLYMER SCIENCE, 1986, 264 (05) :439-444
[24]   PRIMARY PARTICLE STABILITY IN BULK-POLYMERIZATION OF VINYL-CHLORIDE AT HIGH ION STRENGTH [J].
TORNELL, BE ;
UUSTALU, JM .
POLYMER, 1986, 27 (02) :250-252
[25]   MODEL FOR KINETICS OF VINYL-CHLORIDE POLYMERIZATION [J].
UGELSTAD, J .
JOURNAL OF MACROMOLECULAR SCIENCE-CHEMISTRY, 1977, A11 (07) :1281-1305
[26]   KINETICS AND MECHANISM OF VINYL-CHLORIDE POLYMERIZATION [J].
UGELSTAD, J ;
MORK, PC ;
HANSEN, FK ;
KAGGERUD, KH ;
ELLINGSEN, T .
PURE AND APPLIED CHEMISTRY, 1981, 53 (02) :323-363
[27]  
UUSTALU J, 1985, THESIS LUND I SCI TE
[28]  
Verwey E J W, 1948, THEORY STABILITY LYO
[29]   AN INVESTIGATION OF PRECIPITATION POLYMERIZATION IN LIQUID VINYL-CHLORIDE BY PHOTON-CORRELATION SPECTROSCOPY [J].
WILLMOUTH, FM ;
RANCE, DG ;
HENMAN, KM .
POLYMER, 1984, 25 (08) :1185-1192