PK(A) VALUES OF CARBOXYL GROUPS IN THE NATIVE AND DENATURED STATES OF BARNASE - THE PK(A) VALUES OF THE DENATURED STATE ARE ON AVERAGE 0.4 UNITS LOWER THAN THOSE OF MODEL COMPOUNDS

被引:169
作者
OLIVEBERG, M [1 ]
ARCUS, VL [1 ]
FERSHT, AR [1 ]
机构
[1] CAMBRIDGE CTR PROT ENGN,CAMBRIDGE CB2 2QH,ENGLAND
关键词
D O I
10.1021/bi00029a018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have determined the pK(A) values of the 12 carboxyl residues in the native and denatured state of barnase by a combination of thermodynamic measurements on mutants of charged residues and NMR titration data. The pK(A) values of the 11 residues titrating under folding conditions (above pH 2.2) were determined by two-dimensional H-1 NMR. The pK(A) value of the remaining residue, Asp 93 which forms a salt link with Arg 69 and titrates at much lower pH values, was determined by changes in the pH dependence of the stability of the protein upon mutation to Asn: pK(A)(Asp93) at low ionic strength (50 mM) and pK(A)(Asp93) at high ionic strength (600 mM). The overall titration of the native state is nonideal, and the protein retains fractionally ionized residues other than Asp 93 throughout the experimental pH range of 0.2-6.3. Protonation events taking place at pH values below 2 were further characterized by the pH dependence of the unfolding kinetics of wild-type and charge-mutant proteins. By comparing the observed pH dependence of the protein stability with that calculated from the pK(A) values for the native protein, we demonstrate that the pK(A) values of the denatured state are significantly lower than those reported for model compounds: the pK(A) values of the denatured state appear on average 0.4 units lower than previous estimates in the presence of chemical denaturant. The results have direct implications for calculations of the energetics of proton equilibria and suggest that the acid/thermally denatured state is not an extended coil where the residues are isolated from one another by the intervening solvent but is compact and involves intramolecular charge repulsion.
引用
收藏
页码:9424 / 9433
页数:10
相关论文
共 54 条
[1]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[2]   PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS [J].
ANTOSIEWICZ, J ;
MCCAMMON, JA ;
GILSON, MK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :415-436
[3]   TOWARD SOLVING THE FOLDING PATHWAY OF BARNASE - THE COMPLETE BACKBONE C-13, N-15, AND H-1-NMR ASSIGNMENTS OF ITS PH-DENATURED STATE [J].
ARCUS, VL ;
VUILLEUMIER, S ;
FREUND, SMV ;
BYCROFT, M ;
FERSHT, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (20) :9412-9416
[4]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[5]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[6]   DETECTION AND CHARACTERIZATION OF A FOLDING INTERMEDIATE IN BARNASE BY NMR [J].
BYCROFT, M ;
MATOUSCHEK, A ;
KELLIS, JT ;
SERRANO, L ;
FERSHT, AR .
NATURE, 1990, 346 (6283) :488-490
[7]   SEQUENTIAL ASSIGNMENT OF THE H-1 NUCLEAR-MAGNETIC-RESONANCE SPECTRUM OF BARNASE [J].
BYCROFT, M ;
SHEPPARD, RN ;
LAU, FT ;
FERSHT, AR .
BIOCHEMISTRY, 1990, 29 (32) :7425-7432
[8]  
CREIGHTON T, 1993, PROTEINS
[9]  
Creighton TE, 1992, PROTEIN FOLDING
[10]   DENATURED STATES OF PROTEINS [J].
DILL, KA ;
SHORTLE, D .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :795-825