BTX MODIFICATION OF NA CHANNELS IN SQUID AXONS .1. STATE DEPENDENCE OF BTX ACTION

被引:29
作者
TANGUY, J [1 ]
YEH, JZ [1 ]
机构
[1] ECOLE NORM SUPER,NEUROBIOL LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1085/jgp.97.3.499
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5-mu-M BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.
引用
收藏
页码:499 / 519
页数:21
相关论文
共 57 条
[1]  
ALBUQUERQUE EX, 1973, J PHARMACOL EXP THER, V184, P308
[2]  
ALBUQUERQUE EX, 1971, J PHARMACOL EXP THER, V176, P511
[3]  
ANDERSEN OS, 1986, ION CHANNEL RECONSTI, P385
[4]   CHARGE MOVEMENT ASSOCIATED WITH OPENING AND CLOSING OF ACTIVATION GATES OF NA CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1974, 63 (05) :533-552
[5]   DESTRUCTION OF SODIUM CONDUCTANCE INACTIVATION IN SQUID AXONS PERFUSED WITH PRONASE [J].
ARMSTRONG, CM ;
BEZANILLA, F ;
ROJAS, E .
JOURNAL OF GENERAL PHYSIOLOGY, 1973, 62 (04) :375-391
[6]   REPLACEMENT OF PROTOPLASM OF A GIANT NERVE FIBRE WITH ARTIFICIAL SOLUTIONS [J].
BAKER, PF ;
SHAW, TI ;
HODGKIN, AL .
NATURE, 1961, 190 (477) :885-+
[7]   VERATRIDINE MODIFIES OPEN SODIUM-CHANNELS [J].
BARNES, S ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1988, 91 (03) :421-443
[8]   EFFECT OF BATRACHOTOXIN ON ELECTROPLAX OF ELECTRIC-EEL - EVIDENCE FOR VOLTAGE-DEPENDENT INTERACTION WITH SODIUM CHANNELS [J].
BARTELSBERNAL, E ;
ROSENBERRY, TL ;
DALY, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (03) :951-955
[9]   INACTIVATION OF SODIUM CHANNEL .1. SODIUM CURRENT EXPERIMENTS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :549-566