BTX MODIFICATION OF NA CHANNELS IN SQUID AXONS .1. STATE DEPENDENCE OF BTX ACTION

被引:29
作者
TANGUY, J [1 ]
YEH, JZ [1 ]
机构
[1] ECOLE NORM SUPER,NEUROBIOL LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1085/jgp.97.3.499
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5-mu-M BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.
引用
收藏
页码:499 / 519
页数:21
相关论文
共 57 条
[21]   THE DUAL EFFECT OF MEMBRANE POTENTIAL ON SODIUM CONDUCTANCE IN THE GIANT AXON OF LOLIGO [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 116 (04) :497-506
[22]  
HOGAN PM, 1971, J PHARMACOL EXP THER, V176, P529
[23]   STATISTICAL-ANALYSIS OF SINGLE SODIUM-CHANNELS - EFFECTS OF N-BROMOACETAMIDE [J].
HORN, R ;
VANDENBERG, CA ;
LANGE, K .
BIOPHYSICAL JOURNAL, 1984, 45 (01) :323-335
[24]   REMOVAL OF SODIUM INACTIVATION AND BLOCK OF SODIUM-CHANNELS BY CHLORAMINE-T IN CRAYFISH AND SQUID GIANT-AXONS [J].
HUANG, JMC ;
TANGUY, J ;
YEH, JZ .
BIOPHYSICAL JOURNAL, 1987, 52 (02) :155-163
[25]   BATRACHOTOXIN MODIFIES THE GATING KINETICS OF SODIUM-CHANNELS IN INTERNALLY PERFUSED NEURO-BLASTOMA CELLS [J].
HUANG, LYM ;
MORAN, N ;
EHRENSTEIN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (06) :2082-2085
[26]   INTERACTION BETWEEN BATRACHOTOXIN AND YOHIMBINE [J].
HUANG, LYM ;
EHRENSTEIN, G ;
CATTERALL, WA .
BIOPHYSICAL JOURNAL, 1978, 23 (02) :219-231
[27]   THE PROPERTIES OF BATRACHOTOXIN-MODIFIED CARDIAC NA CHANNELS, INCLUDING STATE-DEPENDENT BLOCK BY TETRODOTOXIN [J].
HUANG, LYM ;
YATANI, A ;
BROWN, AM .
JOURNAL OF GENERAL PHYSIOLOGY, 1987, 90 (03) :341-360
[29]   FURTHER ANALYSIS OF THE MECHANISMS OF ACTION OF BATRACHOTOXIN ON THE MEMBRANE OF MYELINATED NERVE [J].
KHODOROV, BI ;
REVENKO, SV .
NEUROSCIENCE, 1979, 4 (09) :1315-1330
[30]  
KHODOROV BI, 1978, MEMBRANE TRANSPORT P, V2, P153