GENERAL NONSYMMETRIC HIGHER-ORDER DECOMPOSITION OF EXPONENTIAL OPERATORS AND SYMPLECTIC INTEGRATORS

被引:138
作者
SUZUKI, M
机构
[1] Department of Physics, Faculty of Science, University of Tokyo, Tokyo, Hongo 7-3-1, Bunkyo-ku
关键词
D O I
10.1143/JPSJ.61.3015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general scheme to realize nonsymmetric higher-order decomposition of exponential operators and symplectic integrators is constructed. This gives a unified theory of the previous symmetric and nonsymmetric decomposition. Ruth's nonsymmetric third-order real decomposition is shown to be a simple example of the present general theory.
引用
收藏
页码:3015 / 3019
页数:5
相关论文
共 12 条
[1]   IMPROVED EXPONENTIAL SPLIT OPERATOR METHOD FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
BANDRAUK, AD ;
SHEN, H .
CHEMICAL PHYSICS LETTERS, 1991, 176 (05) :428-432
[2]   A HAMILTONIAN-FREE DESCRIPTION OF SINGLE-PARTICLE DYNAMICS FOR HOPELESSLY COMPLEX PERIODIC-SYSTEMS [J].
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1133-1144
[3]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[4]   TRANSFER-MATRIX CALCULATIONS OF THE SPIN 1/2 ANTIFERROMAGNETIC XXZ MODEL ON THE 4X2 TRIANGULAR LATTICE USING THE FRACTAL DECOMPOSITION [J].
HATANO, N ;
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (03) :481-492
[5]   GENERALIZED CUMULANT EXPANSION METHOD [J].
KUBO, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 (07) :1100-&
[6]  
Neri F., 1988, PREPRINT
[7]   A CANONICAL INTEGRATION TECHNIQUE [J].
RUTH, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) :2669-2671
[8]   GENERAL-THEORY OF HIGHER-ORDER DECOMPOSITION OF EXPONENTIAL OPERATORS AND SYMPLECTIC INTEGRATORS [J].
SUZUKI, M .
PHYSICS LETTERS A, 1992, 165 (5-6) :387-395
[10]   GENERAL-THEORY OF FRACTAL PATH-INTEGRALS WITH APPLICATIONS TO MANY-BODY THEORIES AND STATISTICAL PHYSICS [J].
SUZUKI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :400-407