CONVERGENCE BEHAVIOR OF INTERIOR-POINT ALGORITHMS

被引:84
作者
GULER, O [1 ]
YE, YY [1 ]
机构
[1] UNIV IOWA,DEPT MANAGEMENT SCI,IOWA CITY,IA 52242
关键词
STRICT COMPLEMENTARITY; MAXIMAL COMPLEMENTARITY; INTERIOR POINT ALGORITHMS; LINEAR PROGRAMMING; MONOTONE COMPLEMENTARITY PROBLEM;
D O I
10.1007/BF01580610
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that most interior-point algorithms for linear programming generate a solution sequence in which every limit point satisfies the strict complementarity condition. These algorithms include all path-following algorithms and some potential reduction algorithms. The result also holds for the monotone complementarity problem if a strict complementarity solution exists. In general, the limit point is a solution that maximizes the number of its nonzero components among all solutions.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 39 条
[1]   LONG STEPS IN AN O(N3L) ALGORITHM FOR LINEAR-PROGRAMMING [J].
ANSTREICHER, KM ;
BOSCH, RA .
MATHEMATICAL PROGRAMMING, 1992, 54 (03) :251-265
[2]  
ANSTREICHER KM, 1990, LONG STEP BARRIER ME
[3]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[4]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[5]   POLYNOMIAL-TIME ALGORITHMS FOR LINEAR-PROGRAMMING BASED ONLY ON PRIMAL SCALING AND PROJECTED GRADIENTS OF A POTENTIAL FUNCTION [J].
FREUND, RM .
MATHEMATICAL PROGRAMMING, 1991, 51 (02) :203-222
[6]  
GOLDMAN A. J., 1956, LINEAR INEQUALITIES, P53
[7]  
Gonzaga C.C., 1989, PROGR MATH PROGRAMMI, P1
[8]  
GONZAGA CC, IN PRESS SIAM J OPTI
[9]   LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR PROGRAMMING, PART II: POTENTIAL REDUCTION METHOD [J].
Gonzaga, Clovis C. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :280-292
[10]   LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR PROGRAMMING, PART I: BARRIER FUNCTION METHOD [J].
Gonzaga, Clovis C. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :268-279