MULTI-AFFINE MODEL FOR THE VELOCITY DISTRIBUTION IN FULLY TURBULENT FLOWS

被引:28
作者
VICSEK, T [1 ]
BARABASI, AL [1 ]
机构
[1] INST TECH PHYS,H-1325 BUDAPEST,HUNGARY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 15期
关键词
D O I
10.1088/0305-4470/24/15/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple multi-affine model for the velocity distribution in fully developed turbulent flows is introduced to capture the essential features of the underlying geometry of the velocity field. We show that in this model the various relevant quantities characterizing different aspects of turbulence can be readily calculated. A simultaneous good agreement is found with the available experimental data for the velocity structure functions, the D(q) spectra obtained from studies of the velocity derivatives, and the exponent describing the scaling of the spectrum of the kinetic energy fluctuations. Our results are obtained analytically assuming a single free parameter. The fractal dimension of the region where the dominating contribution to dissipation comes from is estimated to be D conguent-to 2.88.
引用
收藏
页码:L845 / L851
页数:7
相关论文
共 22 条
  • [1] [Anonymous], RANDOM FLUCTUATIONS
  • [2] HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS
    ANSELMET, F
    GAGNE, Y
    HOPFINGER, EJ
    ANTONIA, RA
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) : 63 - 89
  • [3] BARABASI AL, IN PRESS
  • [4] BARABASI AL, 1991, IN PRESS PHYS REV A
  • [5] BATCHELOR GK, 1982, THEORY HOMOGENEOUS T
  • [6] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [7] SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE
    FRISCH, U
    SULEM, PL
    NELKIN, M
    [J]. JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) : 719 - 736
  • [8] FRISCH U, 1985, TURBULENCE PREDICTAB
  • [9] FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS
    HALSEY, TC
    JENSEN, MH
    KADANOFF, LP
    PROCACCIA, I
    SHRAIMAN, BI
    [J]. PHYSICAL REVIEW A, 1986, 33 (02): : 1141 - 1151
  • [10] THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS
    HENTSCHEL, HGE
    PROCACCIA, I
    [J]. PHYSICA D, 1983, 8 (03): : 435 - 444