False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:30
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
收藏
页码:436 / 446
页数:11
相关论文
共 41 条
[1]  
Abramovichet F., 2000, 200019 STANF U DEP S
[2]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[3]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[4]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Adaptive linear step-up procedures that control the false discovery rate [J].
Benjamini, Yoav ;
Krieger, Abba M. ;
Yekutieli, Daniel .
BIOMETRIKA, 2006, 93 (03) :491-507
[7]   Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia [J].
Bullinger, L ;
Döhner, K ;
Bair, E ;
Fröhling, S ;
Schlenk, RF ;
Tibshirani, R ;
Döhner, H ;
Pollack, JR .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (16) :1605-1616
[8]  
Cheng C, 2004, STAT APPL GENET MOL, V3, P36
[9]  
Cheng C., 2006, IMS LECT NOTES MONOG, V49, P51
[10]   Empirical Bayes screening of many p-values with applications to microarray studies [J].
Datta, S ;
Datta, S .
BIOINFORMATICS, 2005, 21 (09) :1987-1994