A LOW COMPLEXITY INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING

被引:15
作者
Todd, Michael J. [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Ind Engn, Coll Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
linear programming; interior-point methods;
D O I
10.1137/0802011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an interior-point algorithm for linear programming that is almost as simple as the affine-scaling method and yet achieves the currently best complexity of O(root n t) iterations to attain precision t. The basic algorithm needs neither dual estimates nor lower bounds, although its analysis is based on Ye's results for the primal-dual potential function. Some computationally preferable variants are also presented.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 33 条
[1]  
ANSTREICHER K. M., 1989, 8939 CORE CATH U LOU
[2]   ON MONOTONICITY IN THE SCALED POTENTIAL ALGORITHM FOR LINEAR-PROGRAMMING [J].
ANSTREICHER, KM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 152 :223-232
[3]   A Monotonic Projective Algorithm for Fractional Linear Programming [J].
Anstreicher, Kurt M. .
ALGORITHMICA, 1986, 1 (1-4) :483-498
[4]  
BARNES E. R., 1988, 13965 RC IBM TJ WATS
[5]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[6]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .2. LEGENDRE TRANSFORM COORDINATES AND CENTRAL TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :527-581
[7]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .1. AFFINE AND PROJECTIVE SCALING TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :499-526
[8]   A Polynomial Newton Method for Linear Programming [J].
de Ghellinck, Guy ;
Vial, Jean-Philippe .
ALGORITHMICA, 1986, 1 (1-4) :425-453
[9]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[10]   POLYNOMIAL-TIME ALGORITHMS FOR LINEAR-PROGRAMMING BASED ONLY ON PRIMAL SCALING AND PROJECTED GRADIENTS OF A POTENTIAL FUNCTION [J].
FREUND, RM .
MATHEMATICAL PROGRAMMING, 1991, 51 (02) :203-222