A LOW COMPLEXITY INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING

被引:15
作者
Todd, Michael J. [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Ind Engn, Coll Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
linear programming; interior-point methods;
D O I
10.1137/0802011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an interior-point algorithm for linear programming that is almost as simple as the affine-scaling method and yet achieves the currently best complexity of O(root n t) iterations to attain precision t. The basic algorithm needs neither dual estimates nor lower bounds, although its analysis is based on Ye's results for the primal-dual potential function. Some computationally preferable variants are also presented.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 33 条
[11]  
GONZAGA C., 1989, ES22790 COPPE FED U
[12]  
GONZAGA CC, 1991, ALGORITHMICA, V6, P153, DOI 10.1007/BF01759039
[13]   POLYNOMIAL AFFINE ALGORITHMS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
MATHEMATICAL PROGRAMMING, 1990, 49 (01) :7-21
[14]  
GONZAGA CC, 1988, PROGR MATH PROGRAMMI, P1
[15]   LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR PROGRAMMING, PART II: POTENTIAL REDUCTION METHOD [J].
Gonzaga, Clovis C. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :280-292
[16]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[17]   AN O(SQUARE-ROOT-N L) ITERATION POTENTIAL REDUCTION ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1991, 50 (03) :331-342
[18]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26
[19]  
KOJIMA M., 1988, PROGR MATH PROGRAMMI, P29
[20]   BOUNDARY-BEHAVIOR OF INTERIOR POINT ALGORITHMS IN LINEAR-PROGRAMMING [J].
MEGIDDO, N ;
SHUB, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) :97-146