Coupled maps and pattern formation on the Sierpinski gasket

被引:4
作者
Cosenza, Mario G. [1 ]
Kapral, Raymond [1 ]
机构
[1] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 1A1, Canada
关键词
D O I
10.1063/1.165875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcation structure of coupled maps on the Sierpinski gasket is investigated. The fractal character of the underlying lattice gives rise to stability boundaries for the periodic synchronized states with unusual features and spatially inhomogeneous states with a complex structure. The results are illustrated by calculations on coupled quadratic and cubic maps. For the coupled cubic map lattice bistability and domain growth processes are studied.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 25 条
[1]  
Barnsley M., 1989, FRACTAL APPROACH HET
[2]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[3]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :112-115
[4]   STRUCTURE OF CLUSTERS GENERATED BY SPATIO-TEMPORAL INTERMITTENCY AND DIRECTED PERCOLATION IN 2 SPACE DIMENSIONS [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW A, 1988, 38 (08) :4351-4354
[5]   COUPLED MAPS ON FRACTAL LATTICES [J].
COSENZA, MG ;
KAPRAL, R .
PHYSICAL REVIEW A, 1992, 46 (04) :1850-1858
[6]  
CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V1
[7]  
Elders R., 1988, PHYS REV B, V38, p[4725, 1988]
[8]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[9]  
Feder J., 1988, FRACTALS
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52