EXACT SOLUTION OF THE BN(1),DN(1),A2N(2),A2N-1(2),DN(2) AND E6(2) LATTICE MODELS

被引:18
作者
DEVEGA, HJ
LOPES, E
机构
[1] Laboratoire de Physique Théorique et Hautes Energies Laboratoire associé au CNRS UA 280., Paris Postal address: LPTHE, Tour 16, ler. étage, Université Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France.
关键词
D O I
10.1016/0550-3213(91)90564-E
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The exact solutions of the integrable lattice vertex models associated to the B(n)(1), D(n)(1), A2n(2), A2n-1(2), D(n)(2) and E6(2) are presented. The free energies and excitation energies of these two-dimensional models are found as functions of the spectral and anisotropy parameters as well as the finite-size corrections yielding the central changes and conformal dimensions. These lattice models yield new massive QFT whose mass spectrum and S-matrix are obtained through the light-cone approach.
引用
收藏
页码:261 / 293
页数:33
相关论文
共 28 条
[21]   DIAGONALIZATION OF GL(N) INVARIANT TRANSFER-MATRICES AND QUANTUM N-WAVE SYSTEM (LEE MODEL) [J].
KULISH, PP ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :L591-L596
[22]   GENERALIZED PARAFERMIONIC THEORY AND INTEGRABLE LATTICE MODELS [J].
MARTINS, MJ .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2091-2093
[23]  
MARTINS MJ, 1990, UCSBTH9056 PREPR
[24]   FACTORIZED S-MATRIX AND THE BETHE ANSATZ FOR SIMPLE LIE-GROUPS [J].
OGIEVETSKY, E ;
WIEGMANN, P .
PHYSICS LETTERS B, 1986, 168 (04) :360-366
[25]   THE PRINCIPAL CHIRAL FIELD IN 2 DIMENSIONS ON CLASSICAL LIE-ALGEBRAS - THE BETHE-ANSATZ SOLUTION AND FACTORIZED THEORY OF SCATTERING [J].
OGIEVETSKY, E ;
RESHETIKHIN, N ;
WIEGMANN, P .
NUCLEAR PHYSICS B, 1987, 280 (01) :45-96
[26]  
RESHETIKHIN N, 1986, THEOR MATH PHYS, V63, P555
[27]   TOWARDS THE CLASSIFICATION OF COMPLETELY INTEGRABLE QUANTUM-FIELD THEORIES (THE BETHE-ANSATZ ASSOCIATED WITH DYNKIN DIAGRAMS AND THEIR AUTOMORPHISMS) [J].
RESHETIKHIN, NY ;
WIEGMANN, PB .
PHYSICS LETTERS B, 1987, 189 (1-2) :125-131
[28]  
TAKHTADZHYAN LA, 1983, J SOVIET MATH, P2470