AN INTEGRABLE 4TH-ORDER NONLINEAR EVOLUTION EQUATION APPLIED TO THERMAL GROOVING OF METAL-SURFACES

被引:27
作者
BROADBRIDGE, P
TRITSCHER, P
机构
[1] Department of Mathematics, University of Wollongong, Wollongong
关键词
D O I
10.1093/imamat/53.3.249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fourth-order nonlinear partial differential equation for surface diffusion is approximated by a new integrable nonlinear evolution equation. Exact solutions are obtained for thermal grooving, subject to boundary conditions representing a section of a grain boundary. When the slope m of the groove centre is large, the linear model grossly overestimates the groove depth. In the linear model dimensionless groove depth increases linearly with m, but in the nonlinear model it approaches an upper limit. A nontrivial similarity solution is found for the limiting case of a thermal groove whose central slope is vertical.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 22 条
[1]   ON THE REMARKABLE NON-LINEAR DIFFUSION EQUATION (DELTA-DELTA-X)(A(U+B)-2(DELTA-U-DELTA-X))-(DELTA-U-DELTA-T) = 0 [J].
BLUMAN, G ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1019-1023
[2]  
Bluman G. W., 1989, SYMMETRIES DIFFERENT
[3]   INTEGRABLE HETEROGENEOUS NONLINEAR SCHRODINGER-EQUATIONS WITH DIELECTRIC LOSS - LIE-BACKLUND SYMMETRIES [J].
BROADBRIDGE, P ;
GODFREY, SE .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) :8-18
[4]   EXACT SOLVABILITY OF THE MULLINS NONLINEAR DIFFUSION-MODEL OF GROOVE DEVELOPMENT [J].
BROADBRIDGE, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1648-1652
[5]   CONSTANT RATE RAINFALL INFILTRATION IN A BOUNDED PROFILE - SOLUTIONS OF A NONLINEAR MODEL [J].
BROADBRIDGE, P ;
KNIGHT, JH ;
ROGERS, C .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (06) :1526-1533
[6]   A SYMMETRY APPROACH TO EXACTLY SOLVABLE EVOLUTION-EQUATIONS [J].
FOKAS, AS .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (06) :1318-1325
[7]  
Ibragimov N. Kh., 1985, TRANSFORMATION GROUP
[9]   ON A PROPERTY OF A CLASSICAL SOLUTION OF THE NONLINEAR MASS-TRANSPORT EQUATION UT=UXX/1+UX2 .2. [J].
KITADA, A ;
UMEHARA, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) :536-537