WEAK-COUPLING THEORY OF THE PERIODIC ANDERSON MODEL IN INFINITE DIMENSIONS

被引:10
作者
HIRASHIMA, DS
MUTOU, T
机构
[1] Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki
来源
PHYSICA B | 1994年 / 199卷
关键词
D O I
10.1016/0921-4526(94)91784-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Second-order perturbation theory is applied to the periodic Anderson model in infinite dimensions. In the particle-hole symmetric case, the electron density of states (DOS) has a hybridization gap at the Fermi level at T = 0; the width DELTA of the gap decreases as the interaction U increases. It is found that DELTA-1 is roughly proportional to the mass enhancement. Furthermore, using this model, we discuss the Van Vleck susceptibility at T = 0. The Van Vleck term is found to be enhanced by the interaction in the weak coupling region.
引用
收藏
页码:206 / 208
页数:3
相关论文
共 9 条
[1]  
Aeppli G., 1992, COMMENTS COND MAT PH, V16, P155
[2]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[3]   FERMI-LIQUID THEORY ON THE BASIS OF THE PERIODIC ANDERSON MODEL WITH SPIN-ORBIT-COUPLING AND CRYSTALLINE FIELD [J].
HANZAWA, K ;
YOSIDA, K ;
YAMADA, K .
PROGRESS OF THEORETICAL PHYSICS, 1989, 81 (05) :960-975
[4]   A NEW CONSTRUCTION OF THERMODYNAMIC MEAN-FIELD THEORIES OF ITINERANT FERMIONS - APPLICATION TO THE FALICOV-KIMBALL MODEL [J].
JANIS, V .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 83 (02) :227-235
[5]   PERIODIC ANDERSON MODEL IN INFINITE DIMENSIONS [J].
JARRELL, M ;
AKHLAGHPOUR, H ;
PRUSCHKE, T .
PHYSICAL REVIEW LETTERS, 1993, 70 (11) :1670-1673
[6]   THEORY OF MULTICOMPONENT FERMI-LIQUID - GENERAL FORMULAS FOR SUSCEPTIBILITIES AND APPLICATIONS TO PERIODIC ANDERSON MODELS [J].
NAKANO, M .
PHYSICAL REVIEW B, 1991, 44 (18) :10300-10327
[7]   SELF-CONSISTENT PERTURBATIONAL APPROACH TO THE HEAVY FERMION PROBLEM IN HIGH DIMENSIONS [J].
SCHWEITZER, H ;
CZYCHOLL, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (03) :377-388
[8]   PERTURBATION EXPANSION FOR ANDERSON HAMILTONIAN .2. [J].
YAMADA, K .
PROGRESS OF THEORETICAL PHYSICS, 1975, 53 (04) :970-986
[9]   MOTT TRANSITION IN THE D = INFINITY HUBBARD-MODEL AT ZERO TEMPERATURE [J].
ZHANG, XY ;
ROZENBERG, MJ ;
KOTLIAR, G .
PHYSICAL REVIEW LETTERS, 1993, 70 (11) :1666-1669