PERIODIC ANDERSON MODEL IN INFINITE DIMENSIONS

被引:103
作者
JARRELL, M [1 ]
AKHLAGHPOUR, H [1 ]
PRUSCHKE, T [1 ]
机构
[1] UNIV REGENSBURG,INST THEORET PHYS,W-8400 REGENSBURG,GERMANY
关键词
D O I
10.1103/PhysRevLett.70.1670
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetric periodic Anderson model is studied in the limit of infinite spatial dimensions within an essentially exact quantum Monte Carlo method. The single-particle spectral function develops a gap DELTA, and the neutron structure factor also develops a gap almost-equal-to 2DELTA. Depending upon the ratio of DELTA to other energy scales, there is a transition to an antiferromagnetic state. In the paramagnetic state, both the f orbital specific heat and ferromagnetic susceptibility display rough scaling with T/DELTA; for T > DELTA they are heavy-fermion-like while for T < DELTA they are insulatorlike.
引用
收藏
页码:1670 / 1673
页数:4
相关论文
共 30 条
[1]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[2]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[3]   MAXIMUM-ENTROPY ANALYSIS OF OVERSAMPLED DATA PROBLEMS [J].
BRYAN, RK .
EUROPEAN BIOPHYSICS JOURNAL, 1990, 18 (03) :165-174
[4]   STRONGLY CORRELATED SYSTEMS IN INFINITE DIMENSIONS AND THEIR ZERO DIMENSIONAL COUNTERPARTS [J].
GEORGES, A ;
KOTLIAR, G ;
SI, QM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (5-6) :705-730
[5]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]   ONE PARTICLE EXCITATION SPECTRUM OF THE KONDO-LATTICE [J].
GREWE, N .
SOLID STATE COMMUNICATIONS, 1984, 50 (01) :19-23
[8]  
Grewe N., 1991, HDB PHYSICS CHEM RAR, P343
[9]   QUANTUM MONTE-CARLO SIMULATIONS AND MAXIMUM-ENTROPY - DYNAMICS FROM IMAGINARY-TIME DATA [J].
GUBERNATIS, JE ;
JARRELL, M ;
SILVER, RN ;
SIVIA, DS .
PHYSICAL REVIEW B, 1991, 44 (12) :6011-6029
[10]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524