PERIODIC ANDERSON MODEL IN INFINITE DIMENSIONS

被引:103
作者
JARRELL, M [1 ]
AKHLAGHPOUR, H [1 ]
PRUSCHKE, T [1 ]
机构
[1] UNIV REGENSBURG,INST THEORET PHYS,W-8400 REGENSBURG,GERMANY
关键词
D O I
10.1103/PhysRevLett.70.1670
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetric periodic Anderson model is studied in the limit of infinite spatial dimensions within an essentially exact quantum Monte Carlo method. The single-particle spectral function develops a gap DELTA, and the neutron structure factor also develops a gap almost-equal-to 2DELTA. Depending upon the ratio of DELTA to other energy scales, there is a transition to an antiferromagnetic state. In the paramagnetic state, both the f orbital specific heat and ferromagnetic susceptibility display rough scaling with T/DELTA; for T > DELTA they are heavy-fermion-like while for T < DELTA they are insulatorlike.
引用
收藏
页码:1670 / 1673
页数:4
相关论文
共 30 条
[11]   HYBRIDIZATION GAP IN CE3BI4PT3 [J].
HUNDLEY, MF ;
CANFIELD, PC ;
THOMPSON, JD ;
FISK, Z ;
LAWRENCE, JM .
PHYSICAL REVIEW B, 1990, 42 (10) :6842-6845
[12]   COMPREHENSIVE MEAN FIELD-THEORY FOR THE HUBBARD-MODEL [J].
JANIS, V ;
VOLLHARDT, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (5-6) :731-747
[13]   A NEW CONSTRUCTION OF THERMODYNAMIC MEAN-FIELD THEORIES OF ITINERANT FERMIONS - APPLICATION TO THE FALICOV-KIMBALL MODEL [J].
JANIS, V .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 83 (02) :227-235
[14]   HUBBARD-MODEL IN INFINITE DIMENSIONS - A QUANTUM MONTE-CARLO STUDY [J].
JARRELL, M .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :168-171
[15]   DYNAMIC SUSCEPTIBILITY OF THE ANDERSON MODEL - A QUANTUM MONTE-CARLO STUDY [J].
JARRELL, M ;
GUBERNATIS, JE ;
SILVER, RN .
PHYSICAL REVIEW B, 1991, 44 (10) :5347-5350
[16]  
JARRELL M, IN PRESS
[17]   CORRELATED LATTICE FERMIONS IN D=INFINITY DIMENSIONS [J].
METZNER, W ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :324-327
[18]   CORRELATED FERMIONS ON A LATTICE IN HIGH DIMENSIONS [J].
MULLERHARTMANN, E .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 74 (04) :507-512
[19]  
Ohkawa F.J., 1991, PROG THEOR PHYS SUPP, V106, P95
[20]  
PRUSCHKE M, IN PRESS Z PHYS B