ESTIMATION OF LOCAL PLANETARY GRAVITY FIELDS USING LINE OF SIGHT GRAVITY-DATA AND AN INTEGRAL OPERATOR

被引:20
作者
BARRIOT, JP [1 ]
BALMINO, G [1 ]
机构
[1] CTR NATL ETUD SPATIALES,DEPT GEODESIE TERR & PLANETAIRE,F-31055 TOULOUSE,FRANCE
关键词
D O I
10.1016/0019-1035(92)90183-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The gravity data coming from planetary probes are Doppler tracking observations which are sometimes reduced to Line-Of-Sight (LOS, the line joining the probe and the observer) gravity data. This direction-dependent representation is quantitatively difficult to use for geodetic and geophysical purposes. We present a new method of mapping LOS gravity data as gravity disturbances (gravity anomalies along a radial direction at a constant altitude). For this, we use an inversion procedure derived from Hotine's integral operator, with a Tikhonov-Arsenine regularization method. Different choices of the regularization parameter are presented in relation to data errors and method errors. After a study of a synthetic case, we apply the method to a real case, the region of Gula Mons (Venus), using Pioneer-Venus orbiter data. © 1992.
引用
收藏
页码:202 / 224
页数:23
相关论文
共 57 条
[21]   ASYMPTOTIC CONVERGENCE RATE OF ARCANGELI METHOD FOR ILL-POSED PROBLEMS [J].
GROETSCH, CW ;
SCHOCK, E .
APPLICABLE ANALYSIS, 1984, 18 (03) :175-182
[22]  
Groetsch CW., 1983, IMPROPERLY POSED PRO, P97, DOI [10.1007/978-3-0348-5460-3_7, DOI 10.1007/978-3-0348-5460-3_7]
[23]   TRUNCATED SINGULAR VALUE DECOMPOSITION SOLUTIONS TO DISCRETE ILL-POSED PROBLEMS WITH ILL-DETERMINED NUMERICAL RANK [J].
HANSEN, PC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :503-518
[24]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[25]  
ILK KH, 1990, ESA CIGARCISI2FR1 FI
[26]  
KING JT, 1979, NUMER FUNCT ANAL OPT, V2, P449
[27]  
KINGHELE DG, 1974, 74026 ROYAL AIRCR ES
[28]  
KRARUP T, 1969, 44 DAN GEOD I REP
[29]  
LAURITZEN SL, 1973, 48 GEOD I MEDD
[30]  
Lawson C. L, 1974, SOLVING LEAST SQUARE, P199, DOI [10.1137/1.9781611971217.ch26, DOI 10.1137/1.9781611971217.CH26]