ON INTEGER POINTS IN POLYHEDRA - A LOWER BOUND

被引:19
作者
BARANY, I
HOWE, R
LOVASZ, L
机构
[1] MATH INST, H-1364 BUDAPEST, HUNGARY
[2] EOTVOS LORAND UNIV, DEPT COMP SCI, H-1088 BUDAPEST, HUNGARY
[3] PRINCETON UNIV, PRINCETON, NJ 08544 USA
[4] YALE UNIV, DEPT MATH, NEW HAVEN, CT 06520 USA
[5] YALE UNIV, COWLES FDN, NEW HAVEN, CT 06520 USA
关键词
AMS subject classification code (1991): 52C07; 11H06;
D O I
10.1007/BF01204716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a polyhedron P subset-of R(n) we write P(I) for the convex hull of the integral points in P. It is known that P(I) can have at most O(phi(n-1)) vertices if P is a rational polyhedron with size- phi. Here we give an example showing that P(I) can have as many as OMEGA(phi(n-1)) vertices. The construction uses the Dirichlet unit theorem.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 8 条
[1]  
Borevich ZI, 1966, NUMBER THEORY
[2]   ON INTEGER POINTS IN POLYHEDRA [J].
COOK, W ;
HARTMANN, M ;
KANNAN, R ;
MCDIARMID, C .
COMBINATORICA, 1992, 12 (01) :27-37
[3]   THE VERTICES OF THE KNAPSACK POLYTOPE [J].
HAYES, AC ;
LARMAN, DG .
DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) :135-138
[4]  
Lang S., 1986, GRADUATE TEXTS MATH, V110
[5]  
MORGAN D, 1989, COMMUNICATION
[7]  
Schrijver A., 1987, THEORY LINEAR INTEGE
[8]  
Shevchenko V. N., 1981, KIBERNETIKA, V2, P133