THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION

被引:125
作者
GINIBRE, J
SOFFER, A
VELO, G
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
[2] UNIV BOLOGNA,DIPARTIMENTO FIS,I-40126 BOLOGNA,ITALY
[3] INFN,BOLOGNA,ITALY
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-1236(92)90044-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the global Cauchy problem for the non-linear wave equation □θ{symbol} + |θ{symbol}|p-1 θ{symbol} = 0 for the critical value p = (n + 2) (n - 2) in space dimension n ≥ 3. We identify a weak space-time integrability property (STIP) of the solutions and prove that it is sufficient to ensure the uniqueness of weak solutions, the global existence of finite energy solutions with the naturally associated STIP, and the global existence of regular solutions (with some n-dependent restrictions on the regularity). For spherically symmetric solutions, we prove that the previous crucial STIP follows from the Morawetz inequality, actually in a much stronger form than necessary, thereby proving that all the previous results hold in the spherically symmetric case. © 1992.
引用
收藏
页码:96 / 130
页数:35
相关论文
共 39 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[2]   LP-LP' ESTIMATES FOR WAVE-EQUATION [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :251-254
[3]   EXISTENCE OF GLOBAL SMOOTH SOLUTIONS OF CERTAIN SEMI-LINEAR HYPERBOLIC EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1979, 167 (02) :99-135
[4]   GLOBAL CLASSICAL-SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
BRENNER, P ;
VONWAHL, W .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (01) :87-121
[5]  
Browder F.E., 1962, MATH Z, V80, P249, DOI https://doi.org/10.1007/BF01162382
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]   SCATTERING-THEORY IN THE ENERGY SPACE FOR A CLASS OF NON-LINEAR WAVE-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :535-573
[8]  
GINIBRE J, 1989, ANN I H POINCARE-AN, V6, P15
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[10]  
GINIBRE J, IN PRESS NONLINEAR A