PARTIALLY ASYMMETRIC EXCLUSION PROCESS WITH OPEN BOUNDARIES

被引:128
作者
SANDOW, S
机构
[1] Department of Physics of Complex Systems, Weizmann Institute of Science
关键词
D O I
10.1103/PhysRevE.50.2660
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exclusive diffusion on a one-dimensional lattice is studied. In the model, particles hop stochastically in both directions but with different rates. At the ends of the lattice, particles are injected and removed. The exact stationary probability measure is represented in the form of a matrix product, as a generalization of the solution given by Derrida et al. [J. Phys. A 26, 1493 (1993)] for the fully asymmetric process. The phase diagram of the current on the infinite lattice is obtained. Analytic expressions for the current in the different phases are derived. The model is equivalent to an XXZ-Heisenberg chain with a certain type of boundary terms, the ground state of which corresponds to the stationary solution of the master equation.
引用
收藏
页码:2660 / 2667
页数:8
相关论文
共 29 条
  • [1] REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS
    ALCARAZ, FC
    DROZ, M
    HENKEL, M
    RITTENBERG, V
    [J]. ANNALS OF PHYSICS, 1994, 230 (02) : 250 - 302
  • [2] THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS
    BIEDENHARN, LC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : L873 - L878
  • [3] A REMARK ON THE HYDRODYNAMICS OF THE ZERO-RANGE PROCESSES
    DEMASI, A
    FERRARI, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 81 - 87
  • [4] AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES
    DERRIDA, B
    DOMANY, E
    MUKAMEL, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) : 667 - 687
  • [5] EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION
    DERRIDA, B
    EVANS, MR
    HAKIM, V
    PASQUIER, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07): : 1493 - 1517
  • [6] EXACT DIFFUSION CONSTANT FOR ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODELS
    DERRIDA, B
    EVANS, MR
    MUKAMEL, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19): : 4911 - 4918
  • [7] MICROSCOPIC-SHOCK PROFILES - EXACT SOLUTION OF A NONEQUILIBRIUM SYSTEM
    DERRIDA, B
    JANOWSKY, SA
    LEBOWITZ, JL
    SPEER, ER
    [J]. EUROPHYSICS LETTERS, 1993, 22 (09): : 651 - 656
  • [8] FOCK-SPACE METHODS FOR IDENTICAL CLASSICAL OBJECTS
    GRASSBERGER, P
    SCHEUNERT, M
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1980, 28 (10): : 547 - 578
  • [9] BETHE SOLUTION FOR THE DYNAMIC-SCALING EXPONENT OF THE NOISY BURGERS-EQUATION
    GWA, LH
    SPOHN, H
    [J]. PHYSICAL REVIEW A, 1992, 46 (02): : 844 - 854
  • [10] 6-VERTEX MODEL, ROUGHENED SURFACES, AND AN ASYMMETRIC SPIN HAMILTONIAN
    GWA, LH
    SPOHN, H
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (06) : 725 - 728