FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN

被引:174
作者
BARRETT, JW
LIU, WB
机构
关键词
D O I
10.2307/2153239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the continuous piecewise linear finite element approximation of the following problem: Given p is-an-element-of (1, infinity), f, and g , find u such that -del . (\delu\p-2delu) = f in OMEGA subset-of R2, u = g on partial derivative OMEGA. The finite element approximation is defined over OMEGA(h), a union of regular triangles, yielding a polygonal approximation to OMEGA. For sufficiently regular solutions u, achievable for a subclass of data f, g, and OMEGA, we prove optimal error bounds for this approximation in the norm W1,q (OMEGA(h)) , q = p for p < 2 and q is-an-element-of [1,2] for p > 2, under the additional assumption that OMEGA(h) subset-or-equal-to OMEGA. Numerical results demonstrating these bounds are also presented.
引用
收藏
页码:523 / 537
页数:15
相关论文
共 10 条
[1]   SIMILARITY SOLUTIONS IN SOME NONLINEAR DIFFUSION PROBLEMS AND IN BOUNDARY-LAYER FLOW OF A PSEUDO-PLASTIC FLUID [J].
ATKINSON, C ;
JONES, CW .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1974, 27 (MAY) :193-211
[2]  
ATKINSON C, 1984, Q J MECH APPL MATH, V37, P401, DOI 10.1093/qjmam/37.3.401
[4]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[5]  
GLOWINSKI R, 1975, REV FRANCAISE AUTO R, V2, P41
[6]  
Kufner A., 1977, FUNCTION SPACES
[7]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[8]   N-DIFFUSION [J].
PHILIP, JR .
AUSTRALIAN JOURNAL OF PHYSICS, 1961, 14 (01) :1-&
[9]  
TYUKHTIN VB, 1982, VESTNIK LENINGRAD U, V13, P111
[10]   FINITE-ELEMENT APPROXIMATIONS OF SOLUTIONS TO P-HARMONIC EQUATION WITH DIRICHLET DATA [J].
WEI, DM .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (11-12) :1235-1251