TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS

被引:243
作者
BORDEMANN, M
MEINRENKEN, E
SCHLICHENMAIER, M
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[2] UNIV MANNHEIM,DEPT MATH & COMP SCI,D-68131 MANNHEIM,GERMANY
关键词
D O I
10.1007/BF02099772
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For general compact Kahler manifolds it is shown that both Toeplitz quantization and geometric quantization lead to a well-defined (by operator norm estimates) classical limit. This generalizes earlier results of the authors and Klimek and Lesniewki obtained for the torus and higher genus Riemann surfaces, respectively. We thereby arrive at an approximation of the Poisson algebra by a sequence of finite-dimensional matrix algebras gl(N), N --> infinity.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 38 条
[31]   COHERENT STATES AND KAHLER MANIFOLDS [J].
RAWNSLEY, JH .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (112) :403-415
[32]  
SCHLICHENMAIER M, 1989, LECTURE NOTES PHYSIC, V322
[33]   CLASSICAL LIMIT OF QUANTUM PARTITION-FUNCTIONS [J].
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 71 (03) :247-276
[34]   QUANTIZATION - TOWARDS A COMPARISON BETWEEN METHODS [J].
TUYNMAN, GM .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (12) :2829-2840
[35]   GENERALIZED BERGMAN KERNELS AND GEOMETRIC-QUANTIZATION [J].
TUYNMAN, GM .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) :573-583
[36]  
Wells RO., 1980, DIFFERENTIAL ANAL CO, V2, DOI [10.1007/978-1-4757-3946-6, DOI 10.1007/978-1-4757-3946-6]
[37]  
WOODHOUSE NMJ, 1980, GEOMETRIC QUANTIZATI
[38]  
[No title captured]