WAS EUCLID AN UNNECESSARILY SOPHISTICATED PSYCHOLOGIST

被引:48
作者
ARABIE, P [1 ]
机构
[1] INST MATH STUDIES SOCIAL SCI,STANFORD,CA
关键词
MULTIDIMENSIONAL SCALING; FACILITY PLANING; CITY-BLOCK DISTANCES; MINKOWSKI METRICS; RECTANGULAR METRIC; RECTILINEAR METRIC; MANHATTAN METRIC; COMBINATION RULES;
D O I
10.1007/BF02294491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A survey of the current state of multidimensional scaling using the city-block metric is presented. Topics include substantive and theoretical issues, recent algorithmic developments and their implications for seemingly straightforward analyses, isometries with other metrics, links to graph-theoretic models, and future prospects.
引用
收藏
页码:567 / 587
页数:21
相关论文
共 154 条
[11]   METRICS ON SPACES OF FINITE TREES [J].
BOORMAN, SA ;
OLIVIER, DC .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1973, 10 (01) :26-59
[12]   DIMENSIONAL MODELS FOR THE PERCEPTION OF RECTANGLES [J].
BORG, I ;
LEUTNER, D .
PERCEPTION & PSYCHOPHYSICS, 1983, 34 (03) :257-267
[13]  
BORG I, 1983, GERMAN J PSYCHOL, V7, P63
[14]  
Borg I., 1987, MULTIDIMENSIONAL SIM
[15]  
BORTZ J, 1974, ARCH PSYCHOL-GER, V126, P196
[16]  
Boyd J.P., 1972, MULTIDIMENSIONAL SCA, V1, P213
[17]   PARAMETRIC FACILITY LOCATION ON A TREE NETWORK WITH AN LP-NORM COST FUNCTION [J].
BRANDEAU, ML ;
CHIU, SS .
TRANSPORTATION SCIENCE, 1988, 22 (01) :59-69
[18]  
BUJA A, 1991, JUN M CLASS SOC N AM
[19]  
Busemann H., 1950, COMMENT MATH HELV VO, V24, P156, DOI DOI 10.1007/BF02567031
[20]  
Busemann H., 1955, GEOMETRY GEODESICS