ON THE MODELING OF DCT AND SUBBAND IMAGE DATA FOR COMPRESSION

被引:117
作者
BIRNEY, KA [1 ]
FISCHER, TR [1 ]
机构
[1] WASHINGTON STATE UNIV,SCH ELECT ENGN & COMP SCI,PULLMAN,WA 99164
基金
美国国家科学基金会;
关键词
D O I
10.1109/83.342184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image subband and discrete cosine transform coefficients are modeled for efficient quantization and noiseless coding. Quantizers and codes are selected based on Laplacian, fixed generalized Gaussian, and adaptive generalized Gaussian models. The quantizers and codes based on the adaptive generalized Gaussian models are always superior in mean-squared error distortion performance but, generally, by no more than 0.08 b/pixel, compared with the much simpler Laplacian model-based quantizers and noiseless codes. This provides strong motivation for the selection of pyramid codes for transform and subband image coding.
引用
收藏
页码:186 / 193
页数:8
相关论文
共 18 条
[1]  
BARLAUD M, UNPUB IEEE T IMAGE P
[2]  
Blahut R.E., 1987, PRINCIPLES PRACTICE
[3]  
DARRAGH JC, 1989, THESIS U CALIFORNIA
[4]   OPTIMUM QUANTIZER PERFORMANCE FOR A CLASS OF NON-GAUSSIAN MEMORYLESS SOURCES [J].
FARVARDIN, N ;
MODESTINO, JW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) :485-497
[5]   A PYRAMID VECTOR QUANTIZER [J].
FISCHER, TR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (04) :568-583
[6]  
FISCHER TR, UNPUB IEEE T INFORMA
[7]  
Jayant N.C., 1984, DIGITAL CODING WAVEF
[8]  
JEONG DG, IN PRESS IEEE T INFO
[9]  
JEONG DG, UNPUB IEEE T IMAGE P
[10]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693