OPTIMUM QUANTIZER PERFORMANCE FOR A CLASS OF NON-GAUSSIAN MEMORYLESS SOURCES

被引:184
作者
FARVARDIN, N
MODESTINO, JW
机构
关键词
D O I
10.1109/TIT.1984.1056920
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:485 / 497
页数:13
相关论文
共 21 条
[1]  
ALGAZI VR, 1965, DS2138 MIT LINC LAB
[2]  
Bazaraa MS, 1979, NONLINEAR PROGRAMMIN
[3]   OPTIMUM QUANTIZERS AND PERMUTATION CODES [J].
BERGER, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (06) :759-+
[4]   MINIMUM ENTROPY QUANTIZERS AND PERMUTATION CODES [J].
BERGER, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :149-157
[5]  
Berger T., 2003, WILEY ENCY TELECOMMU
[6]   COMPUTATION OF CHANNEL CAPACITY AND RATE-DISTORTION FUNCTIONS [J].
BLAHUT, RE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (04) :460-+
[7]  
FLEISCHER PE, 1964, IEEE INT CONV REC 1, P104
[8]   ASYMPTOTICALLY EFFICIENT QUANTIZING [J].
GISH, H ;
PIERCE, JN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (05) :676-+
[9]   ANALOG SOURCE DIGITIZATION - A COMPARISON OF THEORY AND PRACTICE [J].
GOBLICK, TJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (02) :323-+
[10]   MULTIPLE LOCAL OPTIMA IN VECTOR QUANTIZERS [J].
GRAY, RM ;
KARNIN, ED .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :256-261