OPTIMUM QUANTIZER PERFORMANCE FOR A CLASS OF NON-GAUSSIAN MEMORYLESS SOURCES

被引:184
作者
FARVARDIN, N
MODESTINO, JW
机构
关键词
D O I
10.1109/TIT.1984.1056920
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:485 / 497
页数:13
相关论文
共 21 条
[11]   BUFFER OVERFLOW IN VARIABLE LENGTH CODING OF FIXED RATE SOURCES [J].
JELINEK, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) :490-+
[12]   EXPONENTIAL RATE OF CONVERGENCE FOR LLOYDS METHOD-I [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :205-210
[13]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489
[14]   QUANTIZING FOR MINIMUM DISTORTION [J].
MAX, J .
IRE TRANSACTIONS ON INFORMATION THEORY, 1960, 6 (01) :7-12
[15]  
MODESTINO JW, 1977, NONPARAMETRIC METHOD, P29
[16]   OPTIMUM QUANTIZER DESIGN USING A FIXED-POINT ALGORITHM [J].
NETRAVALI, AN ;
SAIGAL, R .
BELL SYSTEM TECHNICAL JOURNAL, 1976, 55 (09) :1423-1435
[17]   CAUSAL SOURCE CODES [J].
NEUHOFF, DL ;
GILBERT, RK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) :701-713
[18]   BOUNDS ON QUANTIZER PERFORMANCE IN LOW BIT-RATE REGION [J].
NOLL, P ;
ZELINSKI, R .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1978, 26 (02) :300-304