BIFURCATIONS OF INVARIANT-MANIFOLDS IN THE GENERALIZED HENON-HEILES SYSTEM

被引:27
作者
GAVRILOV, L
机构
来源
PHYSICA D | 1989年 / 34卷 / 1-2期
关键词
D O I
10.1016/0167-2789(89)90236-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:223 / 239
页数:17
相关论文
共 20 条
[1]   THE KOWALEWSKI AND HENON-HEILES MOTIONS AS MANAKOV GEODESIC-FLOWS ON SO(4) - A TWO-DIMENSIONAL FAMILY OF LAX PAIRS [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 113 (04) :659-700
[2]  
ADLER M, 1988, PERSPECTIVES MATH
[3]  
AIZAWA Y, 1972, J PHYS SOC JPN, V32, P1636, DOI 10.1143/JPSJ.32.1636
[4]  
ARNOLD V. I., 1983, CATASTROPHE THEORY
[5]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[6]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[7]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[8]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113
[9]  
Griffiths P, 1978, PRINCIPLES ALGEBRAIC
[10]  
Kharlamov M. P., 1983, SOV MATH DOKL, V273, p[1322, 802]