SLOW DECAY OF TEMPORAL CORRELATIONS IN QUANTUM-SYSTEMS WITH CANTOR SPECTRA

被引:188
作者
KETZMERICK, R
PETSCHEL, G
GEISEL, T
机构
[1] Institut f̈r Theoretische Physik und Sonderforschungsbereich Nichtlineare Dynamik, Universität Frankfurt
关键词
D O I
10.1103/PhysRevLett.69.695
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the temporal autocorrelation function C(t) for quantum systems with Cantor spectra has an algebraic decay C(t) approximately t(-delta), where 8 equals the generalized dimension D2 of the spectral measure and is bounded by the Hausdorff dimension D0 greater-than-or-equal-to delta. We study various incommensurate systems with singular continuous and absolutely continuous Cantor spectra and find extremely slow correlation decays in singular continuous cases (delta = 0.14 for the critical Harper model and 0 < delta less-than-or-equal-to 0.84 for the Fibonacci chains). In the kicked Harper model we demonstrate that the quantum mechanical decay is unrelated to the existence of classical chaos.
引用
收藏
页码:695 / 698
页数:4
相关论文
共 32 条
[1]  
AUBRY S, 1979, P ISRAEL PHYSICAL SO, V3, P133
[2]   TRANSIENT AND RECURRENT SPECTRUM [J].
AVRON, JE ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 43 (01) :1-31
[3]   CHAOTIC RABI OSCILLATIONS UNDER QUASI-PERIODIC PERTURBATION - COMMENT [J].
BADII, R ;
MEIER, PF .
PHYSICAL REVIEW LETTERS, 1987, 58 (10) :1045-1045
[4]   CANTOR SPECTRUM FOR THE ALMOST MATHIEU EQUATION [J].
BELLISSARD, J ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (03) :408-419
[5]   SPECTRAL PROPERTIES OF ONE DIMENSIONAL QUASI-CRYSTALS [J].
BELLISSARD, J ;
IOCHUM, B ;
SCOPPOLA, E ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (03) :527-543
[6]  
BORLAND RE, 1966, MATH PHYSICS 1 DIMEN, P929
[7]   SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .2. FINITE-SAMPLE APPROACH [J].
DITTRICH, T ;
SMILANSKY, U .
NONLINEARITY, 1991, 4 (01) :85-101
[8]   SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .1. THE LOCAL SPECTRUM [J].
DITTRICH, T ;
SMILANSKY, U .
NONLINEARITY, 1991, 4 (01) :59-84
[9]   IRRATIONAL DECIMATIONS AND PATH-INTEGRALS FOR EXTERNAL NOISE [J].
FEIGENBAUM, MJ ;
HASSLACHER, B .
PHYSICAL REVIEW LETTERS, 1982, 49 (09) :605-609
[10]  
GEISEL T, 1992, NATO ADV SCI I C-MAT, V358, P43