A MULTIGRID ALGORITHM FOR THE LOWEST-ORDER RAVIART-THOMAS MIXED TRIANGULAR FINITE-ELEMENT METHOD

被引:45
作者
BRENNER, SC
机构
[1] Clarkson Univ, Potsdam, NY
关键词
ELLIPTIC BOUNDARY VALUE PROBLEM; MULTIGRID METHOD; NONCONFORMING FINITE ELEMENT; MIXED FINITE ELEMENT; RAVIART-THOMAS FINITE ELEMENT;
D O I
10.1137/0729042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An optimal order multigrid method for the lowest-order Raviart-Thomas mixed triangular finite element is developed. The algorithm and the convergence analysis are based on the equivalence between Raviart-Thomas mixed methods and certain nonconforming methods. Both the Dirichlet and singular Neumann boundary value problems for second-order elliptic equations are discussed.
引用
收藏
页码:647 / 678
页数:32
相关论文
共 25 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Arnold D.N., 1984, JAPAN J APPL MATH, V1, P347
[3]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[4]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[5]   MULTIGRID METHODS FOR NONCONFORMING FINITE-ELEMENT METHODS [J].
BRAESS, D ;
VERFURTH, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :979-986
[6]  
Bramble J. H., 1970, SIAM J NUMER ANAL, V7, P113
[7]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[8]   AN OPTIMAL-ORDER NONCONFORMING MULTIGRID METHOD FOR THE BIHARMONIC EQUATION [J].
BRENNER, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1124-1138
[9]  
BRENNER SC, 1989, MATH COMPUT, V52, P1
[10]  
BRENNER SC, 1990, MATH COMPUT, V54, P411